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Liquid Level Variation for Changes in In-flow
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Liquid Level Variation for Changes in In-flow (contd..)

Mass balance:
Rate of _ Rate of [ Rate of accumulation
mass flow in mass flow out | of mass in tank
t) — t) = ——
pq(t) — pqo(t) p”
Taking p and A as constant,

dh
t) — qo(t) = A—
a(t) - aolt) = A%
dh
—go = A—
q—4q pm
The flow rate g, depends on the liquid level h and resistance R, as
below:
_h
do = p
Therefore,
h dh
LA
TR "dt

Dr. M. Subramanian CTRL

)



Liquid Level Variation for Changes in In-flow (contd..)

Flow Resistance

Flow through the outlet line (g,) depends the head (h) and the
total resistance (R) due to friction in the outlet pipeline and valve.
It is related as

AP = pgh = QfL[’)"’g and v, = ZTZ
From the above it can be noted, that
Go < h"
e
o = R

where R is resistance to fluid-flow.
For simplifying the derivations, we shall consider the above as

qozﬁ
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Liquid Level Variation for Changes in In-flow (contd..)

h dh
——=A— 1
G- p=A (1)
Initially the process is operating at steady state, which means that
dh/dt = 0, and with g = g5, h = hs. i.e.,
hs

qs—ﬁzo (2)

Eqn.(1) — Eqn.(2) =

1

(9—gs) = R(h_hs)+AM

3
pm (3)
Let us define the deviation variables as:

Q=9—gs
H=h-— hs
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Liquid Level Variation for Changes in In-flow (contd..)

Using the deviation variables in Eqn.(3), we get

H dH
=—+A— 4
Q=5 +A— (4)
Taking Laplace transform for the above, we get
H
as) = ) 1 asti(s) (5)
Note: L[dH/dt] is simply sH(s), because H(0) = 0. Rewriting the
Eqn.(5) as,
H(s) R
Q(s) 7s+1 (6)
where 7 = AR = time constant of the system.
H
The term 08 = G(s) is called as the transfer function of the

system.
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Liquid Level Variation for Changes in In-flow (contd..)

The term R is simply the conversion factor that relates h(t) to
q(t) when the system is at steady state. This is called as the
steady state gain (K) of the system. Reason for this terminology
('steady state gain') is as follows:

Let the inflow Q(t) changes according to a unit-step change (i.e.,
Q(t) changes from its initial value of 0 to 1).

1
Q(s) = S
Using this in Eqn.(6), we get
1 R

H(s) = sTs+1
Applying final value theorem to H(s), we get
R
i TS + 1

This shows that the ultimate change in H(t) for a unit change in
Q(t) is simply R.
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Liquid Level Variation for Changes in In-flow (contd..)

From the relation between g, and h we can write,

Qo = ﬂ == QO(S) = l

R H(s) R (7)
From Eqns.(6) and (7) we get,
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Response of Thermometer

Fluid

T = thermometer

- - 1
reading =" Z = fluid temperature

Mercury >-\—/ Glass wall
)
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Response of Thermometer

Heat balance:

dT
hA(Too — T)— 0= mCp—
( ) mCp-—
Rearranging the above,
mCp dT
—— 4+ T =Ty
hA dt +
dT
— 4+ T =T
T ar +
At steady state, i.e., for t <0
0+ Ts = Toos
Using deviation variables, 0 = T — Ts; 0y = Too — Toos, We get
do
— 4+ 0=10
i
Taking Laplace transform, and rearranging
6(s) 1
Ooo(s)  7Ts+1
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First Order System (Generalization)

From mass or energy balances, we get for the output variable y(t),

d
a -+ aoy(t) = bx(t)
a d + agy = bx
1 oy =
where x(t) is the input. If ag # 0, then
31 dy b
= —x(t
ap dt y aoX( )
dy
o by = Kx(t) 1)

where 7, is known as time constant of the process, and K, is
called the steady-state gain or static gain or simply the gain of the
process.
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First Order System (contd..)

If Y(t) = y(t) — ys and X(t) = x(t) — xs are in terms of deviation
variables around a steady state, then the initial conditions are:

YO0)=y(0)—ys=ys—ys =0 and X(0)=x(0) —xs =0

Using the above conditions, and taking the Laplace transform for
Eqn.(1), we get

Y(s K

G(S) _ ( ) — p

X(s) Tps+1
Because of the usage of deviation variables, the Laplace transform
of the differential equation results in an equation that is free of
initial conditions, because the initial values of X and Y are zero.
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Transfer Function

Y(s) K,  Laplace transform of output deviation _ G(s)

X(s) 7ps+1 Laplace transform of output deviation

The above ratio is called the transfer function, G(s), of the
system. In examining physical systems, we usually attempt to
obtain a transfer function.

Xis) Ks)
— G(S) ——
Forcing
Function Transfer Response
———— . P
[nput Function Output
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Transfer Function (contd..)

Procedure for obtaining the transfer function for a process:

&

© © 00

Write the appropriate balance equations (usually mass or
energy balances for a chemical process).

Linearize terms if necessary.
Write the balance equations in deviation variable form.
Take Laplace transform for the linear balance equations.

Rearrange the resulting transformed equation into the transfer
function form (i.e., the output divided by the input).
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Idealized Input Functions

System

|4 NN
AT

t=0 Time
(a) step input (b) sinusoidal input
t t
| |0
(c) ramp input (d) impulse input
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Idealized Input Functions

System
input

1/A

A Time

(e) Unit pulse input, d(t)
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Idealized Input Functions (contd..)

Function x(t) X(s)
A t>0 A
Step X(t)_{o t<0 s
a
Ramp at 2
w
Si idal in(wt B
inusoida sin(wt) P
Impulse o(t) 1
0 t<o0 A
Rectangular pulse x(t)=<¢ A 0<t<T — (1 — e_ST)
s
0 t>T
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First Order System - Response to Step Input

The transfer function of first order system is given by

Y(s)  Kp
X(s) Tps+1

G(s) =

Let us examine how it responds to a unit step change in input,
x(t).

1
For unit step input, X(s) = o Therefore,

Y(s) = K K Kep
s(tps+1) s Tps+1

Taking inverse Laplace transform, we get
y(t) = Kp(1 — e7*/7%)
For step input of magnitude A,
y(t) = AK,y (1 — e /™)
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First Order System - Response to Step Input (contd..)

o
(=)

t

Tp
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Solved Problems

Example 1: Tank Dynamics for Step Change in In-flow

A tank of volume 0.25 m3 and height 1 m has water flowing in at
0.05 m3/min. The outlet flow rate is governed by the relation

Fout = 0.1 h where h is the height of the water in the tank in m
and Fo,t is the outlet flow rate in m3/min. The inlet flow rate
changes suddenly from its nominal value of 0.05 m3/min to 0.15
m3/min and remains there. The time (in minutes) at which the
tank will begin to overflow is given by (G-2008-62)

(a) 0.28 (b) 1.01 (c) 1.73 (d) oo
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Solved Problems (contd..)

Sowtion: .

From balance on volumetric flow rate,

d(AR)  dh
Fi— Fo = = AL
° dt dt
i.e., "
A= 4 F,=F
dt v

Given: F, = Foux = 0.1h m3/min. And,
A = Vigtal/ Protal = 0.25/1 = 0.25 m?. Therefore, the above
equation becomes

dh
25— dh=F 1
0.5 +0 )]
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Solved Problems (contd..)

At initial steady state, dh/dt =0 and, F; = F, = 0.1 h,.
Given: F; =0.05 m3/min; Therefore, h, = 0.05/0.1 = 0.5 m.
Rewriting the Eqn.(1) as below:

dh
25—+ h=10F; 2
5dt+ 0 (2)

At the initial steady state, the above equation becomes,

0+ ho =10 x Fj,

0-+0.5 =10 x 0.05 (3)
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Solved Problems (contd..)

Eqn.(2)— Eqn.(3) =

dh
25— + (h— 0.5) = 10(F; — 0.05)

Writing (h — 0.5) as h, and (F; — 0.05) as F; we have

dh - _ dh  dh -
2.5E + h=10F; (Note. Pl as (h—10)= h)

Taking Laplace transform for the above equation,

2.55h(s) 4 h(s) = 10F;(s)

h(s) 10 K,
Fi(s) 25s+1 7ps+1
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Solved Problems (contd..)

For a step change in input of magnitude A, we get the response as
h(t) = AK,(1 — e~t/7)
Here, A=0.15—-0.05=0.1 m3/min. Therefore,
h(t) =0.1x10(1 — e t/2%) =1 — ¢ /25

ie.,
h—05=1—¢ /25

The tank gets filled when h reaches the hygia of 1 m. i.e.,

1-05=1—¢et/25

e 125 =05
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Solved Problems (contd..)

Taking logarithms on both sides, we get
—t/2.5 =1In(0.5) = t=1733 min

The tank gets filled and starts to overflow, after 1.733 min from
the start of change of flow rate to 0.15 m3/min from its initial
value of 0.05 m3/min. (c) v
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Solved Problems

Example 2: Tank Dynamics for Step Change in In-flow (Different

Solution Methods)

Consider a cylindrical tank of cross sectional area 2 m?. Steady
inflow of liquid to the tank is 0.015 m3/s. Outflow (gs) is related
to the head (h, in m) of liquid in the tank as

go = 0.01vh

At time t = 0, the inflow valve is closed and so there is no inflow
for t > 0. Find the time necessary to empty the tank to half the

original head. Solve by: (i) direct analytical solution of differential
equation, and by (ii) Laplace transform method with linearized h.
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Solved Problems (contd..)

At initial steady state, g = q,. Therefore,

0.015 = 0.01/hs = h;,=225m

From mass balance for the constant density systems (applicable for

liquids),
dh
— A—
7 dt
For t > 0, g = 0. Therefore,
dh
o= A—
9=t
Substituting for g, and A, we get
—0.01vVh = 27

4
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Solved Problems (contd..)

Rearranging, and integrating the above we get

hs /2 t
dh _ —0.005/ dt
0

o Vho
[h[(1/2)+1]] hs/2
————|  =0.005t
12 |,

[2/71/2} :s/ 2 0.005¢

S

Substituting for hs = 2.25 m, we get
2 [1.1251/2 - 2.251/2} — 0.005¢
— t=175.74s

This result is obtained by direct solution of differential equation.
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Solved Problems (contd..)

From mass balance for the constant density systems (applicable for
liquids),
dh
g = A—
49— Qo P
At initial state,
0.015 — 0.01v/hs =0
Subtracting the above two equations,
d(h—h
(g —0.015) — (go — 0.01y/hs) = dtS)
Using deviation variables,
dH
o = A— 1
Q- Q=A% 1)
where Q = g — gs = g — 0.015, Qo = go — Gos = o — 0.011/hs
and, H= h— h;.
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Solved Problems (contd..)

In the above, Q, = go — 0.01y/h; = 0.01v/h — 0.011/A; i.e.,
Qo = 0.01(V'h — \/hy) (2)

Since Q, is having non-linear relation with h, i.e., @ Vh, we
have to linearize this function before taking Laplace transform.
From Taylor series expansion, for the variable f(x), around x,, and
considering terms upto '(x,), we get

f(x) = f(xo) + f'(x0) (X — Xo)

2vh
Vh= f+ (h ho)

Here, f(x) = v/h; and, f/(x) = Hence,
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Solved Problems (contd..)

For v/h around hs, we get

Vh=hs +

1
27\/h>5(h_ hs)

Using this in Eqn.(2), we get

Q, = 0.01 {%}Fs(h - hs)]

We know that hs = 2.25 m. Therefore,

1 0.01 H
2\/2.25(/7_ s)} — (h=hs) =35

Qo =0.01 {

where H = h — hs.
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Solved Problems (contd..)

Substituting for Q, from above in Eqn.(1), we get
H dH
L Sl
@ 300 dt
Since, A =2 m?, we get
dH H
@ 300~ 9
dH
600— + H = 300
™ + Q
Taking Laplace transform,
H(s) 300 K, )
Q(s) 600s+1 Tos+1
where K, = R = 300 s/m?; and, Tp = AR = 2 x 300 = 600 s.
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Solved Problems (contd..)

For t >0, Q(t) = q(t) — gs = 0 — 0.015 m3/s. Hence,
Q(s) = —0.015/s. Substituting this in Eqn.(2), and taking inverse
Laplace transform, we get

H(t) = —0.015 x 300 x (1 — e~t/600)
Since H(t) = h(t) — hs = h(t) — 2.25, we get
h(t) = 2.25 — 4.5 x (1 — /0%
For h(t) = hs/2 = 2.25/2 = 1.125 m, we get
1.125 = 2.25 — 4.5 x (1 — e~ t/0%0)
— t=17261s
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Solved Problems (contd..)

Note: The time obtained by this Laplace transform method (i.e.,
172.61 s) is slightly different from that obtained by direct solution
method (i.e., 175.74 s). This is because of the approximation
involved in Taylor series expansion.

The function g = 0.01v/h is approximated around its initial steady

state of hs =2.25 m, as q = Ojlh i.e., g = 0.00333h.
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Linearizing Vh

Nonlinear model:
Here the outflow is given by

o = C\fh
From mass balance for a constant density system,
dh
—CVvh=A—
9= CVh=Ag

Linearized model:
Here the outflow is taken as

h
do = E
In terms of deviation variables, i.e., @ = g — gs; and, H = h — h;,
H(s) R
Qs)  7s+1
where
R= 2\2/75 and T=AR
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Linearizing v/h (contd..)

go = CVh
f(h) = CvVh
f(h) ~ () + (T ) (=)
~ F(he) + 5 =(h = )
FB) — (k) ~ 5= (h— )
Jo — Gos = 27\//7—5(/7 — hs)
Qo = ¢

——H
2v'hs




Idealized Inputs
Step input

X(1)
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Idealized Inputs
Ramp input

A
X
X=0; t<0
X=bt; t>0
X(s) = bls*
Slope =b
0 -
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Idealized Inputs
Pulse input

X0

o

X=0;t<0

X= %;05 t<b

X=0;t>b

lim X(71) = Ad(1)
b—0

L{Ad(n} = A




Idealized Inputs
Sinusoidal input

X=0;1<0
Period = 27

0;
[ X=Asin @, >0
I Aw
Xis) =
}\ ; N\ & =2, &
\\// N

|
I
I
I
1
0 t

X0
(=T
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First Order System

Original ODE:
dy
TPE +y = Kpx
ODE in deviation variable:

where Y = y — y, is deviation variable of output; X = x — s is
deviation variable of input.
Laplace transform:

Dr. M. Subramanian CTRL



Step Input to First Order System

_Y(s) K
)= X(s) " s +1

For step input of magnitude A, X(t) = A; and X(s) = A/s.

y(s)= 2 f
o s7'ps+1

Upon partial fraction expansion, we get

Y(s) = AK, (1 - s,+11/7,,>

Taking L1
Y(t) = AK,(1 — e /")
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Response of First Order System to Step Input

1.0
’I /
08—+~
4
}"(t) 0.0 {' /
AK !
P04t
I,
!
02
0
0 1 2 3 4 5
3
p

o If the initial rate of change of Y/(t) were maintained, the
response would be complete in one time constant.

@ The value of Y(t) reaches 63.2% of its ultimate value when
the time elapsed is equal to one time constant 7,.
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-

slows the response

increasing 7

=B

of the ultimate value

asuodsay

Time

TRL
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Impulse Input to First Order System

Y(s) K

G = = P

P = X(s) " mps 4 1

For impulse input of magnitude 1, X(s) = 1. i.e., unit impulse.
For impulse input of magnitude A, X(t) = Ad(t), and X(s) = A.

This leads to AK AK
Y(S) — P _ P/TP
Tps+1  s+1/7,
Taking £71,
AK
V(e) = S (e )
Tp
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Impulse Input to First Order System (contd..)

1.0

0.8 \

0.6

Y (1) \
flf&’p 0.4
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Comparison of Responses of Unit Step and Impulse Inputs

Step Response of First-Order System

Ultimate Value Impulse Response of a First-Order System
1 T 1 T T
0.9 B 09 - i
08 - B
o8 \ Initial “jump” is to Kp/7
071 Response is 63.2% complete at t= 7 | 0.7 7
06 =~ 706 e
N =
05 - 7 ¥ 05 g
= £ )
04 F - 04 Response is 63.2% complete at (= 7
03 - - 03 - (Initial “jump” has decayed to 36.8%) |
021 Initial|slope intersects ultimate value at f= 7 7 0.2
0.1 1 b 0.1 F
0 I I
4 0
0 1 2 3 4 0 1 2 3 4
vr T
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A certain thermocouple has a specific time constant of 2 sec. If the process temperature
changes abruptly from 800 to 900°C, the temperature reading in an indicator attached
to the thermocouple after 6 sec will be approximately, (G-1991-9.)

a) 860°C b) 900°C ¢) 890°C d) 895°C
(a) (b) (¢) (d)
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(d) \/ Explanation: y(t) = yo + A(1 — e~%/7). Hence, y(t) = 800 + (900 — 800) x
(1—e~t/7) =8095°C. |
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A rectangular tank is fitted with a valve at the bottom and is used for storing a liquid.
The area of cross-section of the tank is 10 m? and the flow resistance of the valve
(assumed constant) is 0.1 s/m?. The time constant of the tank will be: (G-1988-8.c.i)

(a) 1 (b) 100 (c) 10.1 (d) 9.9
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(a) v BExplanation: 7 = storage capacitance X resistance to flow = 4 x R =
10x0.1=1 O
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Tutorial-2

4.16. The level in a tank responds as a first-order system with changes in the inlet flow. Given
the following level versus time data that were gathered (Fig. P4-16) after the inlet flow was

Time (min) Level (fty

7=

0 48—
0.138 53673
02761 5.9041
04141 6.412
05521 6.8927
0.6902 73475
0.8282 7.7779
0.9663 8.1852
85706
89354
92805
9.6071
99161 0 6 3
0.2085 Time (min)

o R

evel (ft)

Do 0 0 O = o

IS
[
IS

10 12 14 16

Inlet flow
1.5 gal/min — 4.8 gal/min
at time = 0

15.3261
5328

15.3297

153313

increased quickly from 1.5 to 4.8 gal/min, deter-
mine the transfer function that relates the height
in the tank to the inlet flow. Be sure to use devia-
tion variables and include units on the steady-state
gain and the time constant.
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4.18. Joe, the maintenance man, dumps the contents of a 55-gal drum of water into the tank pro-
cess shown below.

40 gal/min

Current volume =
200 gal of water

40 gal/min

FIGURE P4-18

(a) Will the tank overflow?

(b) Plot the height as ), starting at £ = 0, the time of the dump.

() Plot the output flow as ¢), starting at ¢ = 0, the time of the dump.
NOTE: The output flow is proportional to the height of fluid in the tank.
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Example 6: Dynamics of Thermometer

A thermometer follows first-order dynamies with a time constant of 0.2 min. It is placed in a
temperature bath at 100°C and is allowed to reach steady state. It is suddenly transferred to
another bath at 150°C at time t = 0 and is left there for 0.2 min. It is immediately returned

to the original bath at 100°C. Calculate the readings at: (i) t = 0.1 min; and, (ii) t = 0.4
min. (G-1992-19.a)
Solution:
Given: At ¢t =0, AT =50°C.
For first order system, fractional change in response — 1 — e7%/7.
Therefore, at t = 0.1
T = AT(1—e %Y%) L T
= 50 x (1—e %) +100
= 119.7°C
at t = 0.2
T = 50x (1—e %2924 100
131.6°C

At t = 0.2 again a step change in T is introduced. Therefore at t = 0.4,

T = (100 — 131.6) x (1 —¢70%/%2) 1 1316 = 111.6°C d
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Stirred Tank Heater

mv Ti
— 1/
m, T
m, T
i
heating coil

Assume:
@ m = mass flow in = mass flow out = constant.
@ m = mass of tank contents = constant

To find: the variation of T with t for changes in g and/or T;.
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Stirred Tank Heater (contd..)

Energy balance: Let T, =0

dT
mCpT; — mCpT + g = meI (]_)

Assume Cp is a constant over the temperature range considered.
At stead state, T; = Tis; T = Ts; g = gs; and, dT /dt = 0. Using
these conditions in Eqn.(1), we get

mCp(Tis — Ts) +qs =0 (2)
Eqn.(1) — Eqn.(2) =

d(T —Ts)

mCp(T; — Tis) — mCp(T — Ts) + (g —qs) = mCp g (3)
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Stirred Tank Heater (contd..)

Rearranging, and using deviation variables T; — T;s = T/;
T—Ts=T' g—qs = Q, we get
dT’ Q

T =T +— 4
dt+ I+fnCp ()

T

where 7 = m/m
Taking Laplace transform, and rearranging,

1/(mCp)
7s+1

T'(s) = = Tils) +

rs+1 '

Q(s)
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Stirred Tank Heater (contd..)

1 1/(inCp)
T'(s) = T! -
(s) Ts+1 i(s)+ s+ 1 Qs)
Block Diagram Representation:
Ti(s) 1
7s+1
T T'(s)
Q—
+
Q(s) [ 1/(mCp)
T7s+1
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Response of First Order System to Ramp Input

First order system:

Y(s) Kp
X(s) Tps+1
Input:
A
X(t) = At = X(s):s—2
Therefore, A K
Y(s)=— P
(s) s?27ps+1

Expanding by partial fractions,
G G G AK,
s s Tps+1  s3(1ps+1)

Solving for Cy, Gy, C3 we get

Y(s) = AK, (1 - TP+T”>

2 s s+1/7
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Response of First Order System to Ramp Input (contd..)

Taking inverse Laplace transform, and grouping the terms, we get

Y(t) = AK, [t =7, (1 e7t/7)]

Y(t) "W Ar,
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Liquid Level System with Constant Outflow

Consider the case where there is a pump in the outflow line. Here
the outflow doesn’t depend on the head of liquid available, and it
is constant.

q(f)—+

g, q,= constant
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Liquid Level System with Constant Outflow (contd..)

From mass balance,

dh
t) = go = A2 1
a(t) — 90 = A 1)
At steady state,
ds —qo =0 (2)
Subtracting Eqn.(2) from (1), and using deviation variables, we get
dH
=A— 3
Q=A_ (3)

where Q@ = g — qs; and, H = h — hs. Taking Laplace transform for
Eqn.(3), we get
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Liquid Level System with Constant Outflow (contd..)

For unit step change in Q(t),

The step response given above is a ramp function that grows
without limit.

The transfer function for the liquid-level system with constant
outlet flow can be considered as a special case of first order system
with R — oo.

. 1
Am (AR5+ 1) ~ As
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