UCH1603 Process Dynamics and Control Second Order Systems

Dr. M. Subramanian

Department of Chemical Engineering SSN College of Engineering subramanianm@ssn.edu.in

February 12, 2021

Second Order System

Second order system is also called quadratic lag system. The dynamics of the system in time-domain is given by a second order differential equation, as below:

$$\tau^2 \frac{d^2 Y}{dt^2} + 2\zeta \tau \frac{dY}{dt} + y = K_p X(t)$$

The corresponding transfer function is given by

$$G(s) = \frac{Y(s)}{X(s)} = \frac{K_p}{\tau^2 s^2 + 2\zeta \tau s + 1}$$
Note: this has to be 1 !

 The characteristic equation of second order system is given by

$$\tau^2 s^2 + 2\zeta \tau s + 1 = 0$$

- If $\zeta < 1$ underdamped system, roots are complex
 - $\zeta=1$ \qquad critically damped system, real and equal roots
 - $\zeta > 1$ overdamped system, roots are real
 - $\zeta = 0$ undamped system, complex roots with zero real part

Response of Second-order system to Step Input

Dr. M. Subramanian CTRL

Response of Second Order System to Unit Step Input Overdamped System

$$\begin{aligned} \zeta > 1: \\ Y(t) &= \mathcal{K}_p\left[1 - e^{-\zeta t/\tau} \left(\cosh\left\{\sqrt{\zeta^2 - 1} \frac{t}{\tau}\right\} + \frac{\zeta}{\sqrt{\zeta^2 - 1}} \sinh\left\{\sqrt{\zeta^2 - 1} \frac{t}{\tau}\right\}\right)\right] \end{aligned}$$

Instead of the above big formula, we shall make use of the following:

$$Y(t) = K_{p} \left(1 + \frac{\tau_{1} e^{-t/\tau_{1}}}{\tau_{2} - \tau_{1}} - \frac{\tau_{2} e^{-t/\tau_{2}}}{\tau_{2} - \tau_{1}} \right)$$

from writing the transfer function as:

$$G(s) = \frac{K_p}{(\tau_1 s + 1)(\tau_2 s + 1)}$$

- The system response resembles a little the response of a first-order system to a unit step input. But when compared to a first-order response we notice that the system initially delays to respond and then its response is rather sluggish.
- Overdamped responses are the responses of multi-capacity processes, which result from the combination of first order systems in series.

Response of Second Order System to Unit Step Input Critically Damped System

 $\zeta = 1$:

$$Y(t) = K_{
ho} \left[1 - \left(1 + rac{t}{ au}
ight) e^{-t/ au}
ight]$$

• Critical damping approaches its ultimate value faster than does an overdamped system.

Response of Second Order System to Unit Step Input Underdamped System

 $0 < \zeta < 1$:

$$Y(t) = K_{
ho} \left[1 - rac{1}{\sqrt{1-\zeta^2}} e^{-\zeta t/ au} \sin(\omega t + \phi)
ight]$$

where

$$\omega = \frac{\sqrt{1-\zeta^2}}{\tau} \qquad \text{and} \qquad \phi = \tan^{-1}\left[\frac{\sqrt{1-\zeta^2}}{\zeta}\right]$$

- Although the response is initially faster and reaches its ultimate value quickly, it does not stay there, but it starts oscillating with progressively decreasing amplitude.
- The oscillatory behavior becomes more pronounced with smaller values of the damping factor, ζ.
- Almost all the underdamped responses in a chemical plant are caused by the interaction of the controllers, with the process unit they control.

- If ζ = 0, then such a second-order system is marginally stable in that the response is of constant amplitude in time. This is the undamped case.
- If $\zeta < 0$, then such a second-order system is unstable and the response grows in time without bound.

Characteristics of an Underdamped Response

Characteristics of an Underdamped Response (contd..)

This is the most commonly exhibited behavior with second order systems.

- (i) Rise time (t_r) : It is the time the process output takes to first reach the new steady-state value.
- (ii) Peak time (t_p) : It is the time for the first peak to appear from the start of response.

$$t_p = \frac{\pi\tau}{\sqrt{1-\zeta^2}}$$

(iii) Overshoot: It's about how much the response exceeds its ultimate value.

Overshoot
$$= \frac{A}{B} = \exp\left(\frac{-\pi\zeta}{\sqrt{1-\zeta^2}}\right)$$

(iv) Decay ratio: It's the ratio of successive peaks of the response.

Decay ratio
$$= \frac{C}{A} = (\text{Overshoot})^2 = \exp\left(\frac{-2\pi\zeta}{\sqrt{1-\zeta^2}}\right)$$

Characteristics of an Underdamped Response (contd..)

(v) Period of oscillation (*T*): It is the time elapsed between two successive peaks (or two successive valleys) of the response.

$$T = \frac{2\pi\tau}{\sqrt{1-\zeta^2}}$$

and

$$\omega = 2\pi f = \frac{2\pi}{T}$$

Natural cyclical period of oscillation (T_n) is the period of oscillation at $\zeta = 0$. Hence,

$$T_n = 2\pi\tau$$

(vi) Settling time (t_s) : It is also known as response time. It is defined as the time required for the response to come within $\pm 5\%$ (or $\pm 2\%$) of its ultimate value and remain there. It's value is given as:

$$t_s = \frac{3\tau}{\zeta}$$
 (5% criterion) $t_s = \frac{4\tau}{\zeta}$ (2% criterion)

Dynamics of U-tube Manometer

Dynamics of U-tube Manometer (contd..)

Force balance at plane XX':

$$P_1A - P_2A -
ho g(2h)A - \left(egin{array}{c} ext{force due to} \\ ext{fluid friction} \end{array}
ight) = m rac{dv}{dt} \qquad (1)$$

Mass of manometric fluid = $m = \rho AL$. Velocity of fluid = $v = \frac{dh}{dt}$. Hence,

$$\frac{dv}{dt} = \frac{d^2h}{dt^2}$$

Force due to friction $= \Delta P_f A$. Assuming laminar flow,

$$\Delta P_f = \frac{2fL\rho v^2}{D} = \frac{32\mu Lv}{D^2} = \frac{8\mu L}{R^2}\frac{dh}{dt}$$

Dynamics of U-tube Manometer (contd..)

Substituting for the known quantities, in Eqn.(1), we get

$$P_1A - P_2A - \rho g(2h)A - \frac{8\mu LA}{R^2}\frac{dh}{dt} = \rho AL\frac{d^2h}{dt^2}$$

Dividing by $2\rho gA$ throughout, and rearranging, we get

$$\frac{L}{2g}\frac{d^2h}{dt^2} + \frac{4\mu L}{\rho g R^2}\frac{dh}{dt} + h = \frac{P_1 - P_2}{2\rho g}$$

i.e.,

$$\tau^2 \frac{d^2 h}{dt^2} + 2\tau \zeta \frac{dh}{dt} + h = K_p \Delta P$$

where

$$\tau^2 = \frac{L}{2g}$$
 $2\tau\zeta = \frac{4\mu L}{\rho g R^2}$ $K_\rho = \frac{1}{2\rho g}$