UCH1603 Process Dynamics and Control Frequency Response

Dr. M. Subramanian

Department of Chemical Engineering SSN College of Engineering subramanianm@ssn.edu.in

March 31, 2021

Introduction

- For the stability analysis and design of feedback controllers, frequency response analysis is very useful.
- When a linear system is subjected to a sinusoidal input, its ultimate response (after a long time) is also a sustained sinusoidal wave (will be proved...). This constitutes the basis of frequency response analysis.
- With frequency response analysis we are interested primarily in determining how the features of the output sinusoidal wave (amplitude, phase shift) change with the frequency of the input sinusoid.

A D > A D > A D > A D > A

3

Response of a First Order System to a Sinusoidal Input

For a first order system,

$$G_{
ho}(s)=rac{Y(s)}{X(s)}=rac{K_{
ho}}{ au_{
ho}s+1}$$

Let X(t) be a sinusoidal input with amplitude A and frequency ω .

$$X(t) = A\sin(\omega t)$$

Then,

$$X(s) = \frac{A\omega}{s^2 + \omega^2}$$

Hence,

$$Y(s) = \frac{K_p}{\tau_p s + 1} \frac{A\omega}{s^2 + \omega^2} = \frac{C_1}{s + 1/\tau_p} + \frac{C_2}{s + j\omega} + \frac{C_3}{s - j\omega}$$

3

Evaluating the coefficients C_1 , C_2 , C_3 , and taking inverse Laplace transform, we get

$$Y(t) = \frac{K_{p}A\omega\tau_{p}}{\tau_{p}^{2}\omega^{2}+1}e^{-t/\tau_{p}} - \frac{K_{p}A\omega\tau_{p}}{\tau_{p}^{2}\omega^{2}+1}\cos(\omega t) + \frac{K_{p}A}{\tau_{p}^{2}\omega^{2}+1}\sin(\omega t)$$

As $t \to \infty$, $e^{-t/\tau_p} \to 0$. Hence,

$$Y_{\rm ss}(t) = -\frac{K_{\rm p}A\omega\tau_{\rm p}}{\tau_{\rm p}^2\omega^2 + 1}\cos(\omega t) + \frac{K_{\rm p}A}{\tau_{\rm p}^2\omega^2 + 1}\sin(\omega t)$$

Using the following trigonometric identity in the above:

$$a_1 \cos b + a_2 \sin b = a_3 \sin(b + \phi)$$

where

$$a_3 = \sqrt{a_1^2 + a_2^2}$$
 and $\phi = \tan^{-1}\left(rac{a_1}{a_2}
ight)$

ヘロト ヘ戸ト ヘヨト ヘヨト

$$Y_{ss}(t) = rac{AK_p}{\sqrt{ au_p^2 \omega^2 + 1}} \sin(\omega t + \phi)$$

where

$$\phi = \tan^{-1}(-\omega\tau_p)$$

- The ultimate response (also referred to as steady state) of a first order system to a sinusoidal input is also a sinusoidal wave with the same frequency ω.
- The ration of output amplitude to input amplitude is called the amplitude ratio (AR) and is a function of frequency.

$$\mathsf{AR} = \frac{K_p}{\sqrt{\tau_p^2 \omega^2 + 1}}$$

3

The output wave lags behind the input wave (phase lag) by an angle |φ|, which is also a function of ω.

<ロト <回ト < 注ト < 注ト

Complex Number

Consider a complex number z defined by

$$z = x + jy$$

The modulus or absolute value of z is represented by |z| and defined by

$$|z| = \sqrt{x^2 + y^2}$$

The phase angle or argument of z is represented by $\angle z$ and defined by

$$\angle z = \tan^{-1}\left(\frac{y}{x}\right)$$

Amplitude Ratio and Phase Shift of First Order System

For a first order system,

$$G(s) = rac{K_p}{ au_p s + 1}$$

Put $s = j\omega$.

$$G(j\omega) = \frac{K_p}{\tau_p j\omega + 1}$$

$$= \frac{K_p}{1 + j\omega\tau_p} = \frac{K_p}{(1 + j\omega\tau_p)} \frac{(1 - j\omega\tau_p)}{(1 - j\omega\tau_p)}$$

$$= \frac{K_p}{\tau_p^2 \omega^2 + 1} - j\frac{K_p \tau_p \omega}{\tau_p^2 \omega^2 + 1}$$
(1)

Amplitude Ratio and Phase Shift of First Order System (contd..)

For Eqn.(1),

Modulus of
$$G(j\omega) = \sqrt{\left(\frac{K_p}{\tau_p^2\omega^2 + 1}\right)^2 + \left(\frac{-K_p\omega\tau_p}{\tau_p^2\omega^2 + 1}\right)^2}$$

$$= \sqrt{\frac{K_p^2 + K_p^2\omega^2\tau_p^2}{(\tau_p^2 + 1)^2}}$$
$$= \frac{K_p}{\sqrt{\tau_p^2\omega^2 + 1}} = \text{Amplitude Ratio} = \text{AR}$$

Amplitude Ratio and Phase Lag of First Order System (contd..)

For Eqn.(1),

Argument of $G(j\omega) = \tan^{-1}(-\omega\tau_p) =$ Phase Shift $= \phi$

This is a phase lag since $\phi < 0$.

Frequency Response of General Linear System

For a linear system with transfer function G(s) = Y(s)/X(s), for input $X(t) = A\sin(\omega t)$, output at steady state (i.e., ultimate response) is given by

$$Y_{ss}(t) = A|G(j\omega)|\sin(\omega t + \phi)|$$

- The ultimate response as $t \to \infty$ is sinusoidal with frequency ω .
- The amplitude ratio is

$$\mathsf{AR} = \frac{A|G(j\omega)|}{A} = |G(j\omega)|$$

The output sinusoidal wave has been shifted by the angle

$$\phi = \text{argument of } G(j\omega)$$

Frequency Response of Pure Capacitive Process

For a pure capacitive process

$$G(s)=\frac{K_p}{s}$$

Put
$$s = j\omega$$

$$G(j\omega) = \frac{K_p}{j\omega} = \frac{K_p}{j\omega}\frac{j\omega}{j\omega} = 0 - j\frac{K_p}{\omega}$$

The amplitude ratio is

$$\mathsf{AR} = |G(j\omega)| = \sqrt{0^2 + \left(\frac{-K_p}{\omega}\right)^2} = \frac{K_p}{\omega}$$

The phase shift is

$$\phi = \tan^{-1}\left(\frac{-Kp/\omega}{0}\right) = \tan^{-1}(-\infty) = -90^{\circ}$$

ヘロト 人間ト 人間ト 人間ト

Frequency Response of Second Order System

For a second order system

$$G(s) = rac{K_p}{ au^2 s^2 + 2\zeta au s + 1}$$

Put $s = j\omega$

$$G(j\omega) = \frac{K_p}{\tau^2(j\omega)^2 + 2\zeta\tau j\omega + 1} = \frac{K_p}{(-\tau^2\omega^2 + 1) + j2\zeta\tau\omega} = \frac{K_p}{(-\tau^2\omega^2 + 1) + j2\zeta\tau\omega} \frac{(-\tau^2\omega^2 + 1) - j2\zeta\tau\omega}{(-\tau^2\omega^2 + 1) - j2\zeta\tau\omega} = \frac{K_p(1 - \tau^2\omega^2)}{(1 - \tau^2\omega^2)^2 + (2\zeta\tau\omega)^2} - j\frac{K_p \cdot 2\zeta\tau\omega}{(1 - \tau^2\omega^2)^2 + (2\zeta\tau\omega)^2}$$

ヘロト ヘヨト ヘヨト ヘヨト

∃ ∽ へ へ

Frequency Response of Second Order System (contd..)

Amplitude ratio:

$$\mathsf{AR} = |G(j\omega)| = \frac{K_p}{\sqrt{(1 - \tau^2 \omega^2)^2 + (2\zeta \tau \omega)^2}}$$

Phase shift:

$$\phi = \text{argument of } G(j\omega) = \tan^{-1}\left(-rac{2\zeta au\omega}{1- au^2\omega^2}
ight)$$

This is a phase lag since $\phi < 0$.

Frequency Response of Second Order System (contd..)

Frequency Response of Second Order System (contd..)

AR and ϕ Various Systems for Sinusoidal Input

System	Transfer function	Amplitude ratio (AR)	Phase shift (ϕ)
First order	$\frac{{\cal K}_p}{\tau_p s+1}$	$\frac{\mathcal{K}_{\rho}}{\sqrt{\tau_{\rho}^2\omega^2+1}}$	$ an^{-1}(-\omega au_p)$
Pure capac- itive	$\frac{K_p}{s}$	$\frac{K_{P}}{\omega}$	-90°
Second or- der	$\frac{K_p}{\tau^2 s^2 + 2\zeta \tau s + 1}$	$\frac{K_p}{\sqrt{(1-\tau^2\omega^2)^2+(2\zeta\tau\omega)^2}}$	$\tan^{-1}\left(-\frac{2\zeta\tau\omega}{1-\tau^2\omega^2}\right)$
Dead time	$e^{- au_d s}$	1	$- au_{d}\omega$
Systems in series	$G_1(s)G_2(s)\cdots G_N(s)$	$(AR)_1(AR)_2\cdots(AR)_N$	$\phi_1 + \phi_2 + \dots + \phi_N$

AR and ϕ Various Systems for Sinusoidal Input (contd..)

System		Transfer function	Amplitude ratio (AR)	Phase shift (ϕ)
Proportic controller	onal r	Kc	K _c	0
PI co troller	on-	$\mathcal{K}_{c}\left(1+rac{1}{ au_{I}s} ight)$	$\kappa_c \sqrt{1+rac{1}{(\omega au_l)^2}}$	$\tan^{-1}\left(\frac{-1}{\omega\tau_I}\right)$
PD co troller	on-	$K_c(1+ au_D s)$	$K_c\sqrt{1+ au_D^2\omega^2}$	$ an^{-1}(au_D\omega)$
PID co troller	on-	$K_c\left(1+rac{1}{ au_Is}+ au_Ds ight)$	$\mathcal{K}_c \sqrt{\left(au_D \omega - rac{1}{ au_I \omega} ight)^2 + 1}$	$\tan^{-1}\left(\tau_D\omega-\frac{1}{\tau_I\omega}\right)$

