CH6605 Process Instrumentation, Dynamics and Control Bode Plots

Dr. M. Subramanian

Department of Chemical Engineering SSN College of Engineering subramanianm@ssn.edu.in

April 2, 2021

Introduction

- The Bode plots (in honor of H. W. Bode) constitute a convenient way to represent the frequency response characteristics of a system.
- The amplitude ratio (AR) and the phase shift (φ) of the ultimate response of a system are functions of the frequency ω.

Introduction

Bode plots consist of a pair of the plots showing:

- How the logarithm of the amplitude ratio varies with frequency.
- How the phase shift varies with frequency.

In order to cover a large range of frequencies, we use logarithmic scale for frequencies.

Plot of \sqrt{x} vs. x

	y=sqrt(x)		
х	у	log x	log y
1	1.0	0.0	0.00
2	1.4	0.3	0.15
5	2.2	0.7	0.35
10	3.2	1.0	0.50
20	4.5	1.3	0.65
50	7.1	1.7	0.85
100	10.0	2.0	1.00
200	14.1	2.3	1.15
400	20.0	2.6	1.30
1000	31.6	3.0	1.50
2000	44.7	3.3	1.65
4000	63.2	3.6	1.80
10000	100.0	4.0	2.00

SSN

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Plot of \sqrt{x} vs. x — Linear Scales

SSN

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Plot of log \sqrt{x} vs. log x — Linear Scales

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ

Plot of \sqrt{x} vs. x — Log-Log Scales

SSN

æ

<ロト <回ト < 注ト < 注ト

Bode Plots of First Order System

For first order system,

$$AR = \frac{K_p}{\sqrt{1 + \tau_p^2 \omega^2}}$$
$$\phi = \tan^{-1}(-\tau_p \omega)$$
$$(AR) = \frac{1}{\log(1 + \sigma^2)}$$

$$\log\left(\frac{\mathsf{AR}}{\mathsf{K}_{\mathsf{P}}}\right) = -\frac{1}{2}\log(1+\tau_{\mathsf{P}}^{2}\omega^{2})$$

The plot of $\log(AR/K_p)$ versus $\log(\tau_p\omega)$ is shown in figure (given in the following page) as a solid (blue) line. Instead of the very elaborate numerical work needed to plot this graph, we can give an approximate sketch by considering its asymptotic behavior as $\omega \to 0$ and as $\omega \to \infty$.

Bode Plots of First Order System

 $\tau_p \omega$

・ロト ・四ト ・ヨト ・ヨト

Asymptotic Plots for First Order System

$$\log\left(\frac{\mathsf{A}\mathsf{R}}{\mathsf{K}_{\mathsf{p}}}\right) = -\frac{1}{2}\log(1+\tau_{\mathsf{p}}^{2}\omega^{2}) \tag{1}$$

(日) (四) (世) (日)

= 900

1. As
$$\omega \to 0$$
, then $\tau_p \omega \to 0$, and from Eqn.(1), $\log\left(\frac{AR}{K_p}\right) \to 0$

or $\left(\frac{\kappa}{K_p}\right) \rightarrow 1$. This is the low-frequency asymptote shown by a blue dashed line.

2. As
$$\omega \to \infty$$
, then $\tau_p \omega \to \infty$, and from Eqn.(1),
 $\log\left(\frac{AR}{K_p}\right) \approx -\log(\tau_p \omega)$. This is the high-frequency
asymptote shown by a red dashed line. It is a line with a slope
of -1 passing through the point $\frac{AR}{K_p} = 1$ for $\tau_p \omega = 1$.

Asymptotic Plots for First Order System (contd..)

The frequency $\omega = 1/\tau_p$ is known as the corner frequency. At the corner frequency, the deviation of the true value of AR/ K_p from the asymptotes is maximum.

The plot of ϕ vs. $\tau_p \omega$ is constructed from the following characteristics:

- As $\omega \to 0$, then $\phi \to 0$.
- As $\omega \to \infty$, then $\tan^{-1}(-\infty) = -90^{\circ}$.
- At $\omega = 1/\tau_p$ (corner frequency), $\phi = \tan^{-1}(-1) = -45^{\circ}$.

A D > A D > A D > A D > A

= 900

Bode Plots of Second Order System

æ

<ロト <回ト < 注ト < 注ト

Second Order System - Asymptotic Plots

$$AR = \frac{K_p}{\sqrt{(1 - \tau^2 \omega^2)^2 + (2\zeta \tau \omega)^2}}$$
$$\phi = \tan^{-1} \left(-\frac{2\zeta \tau \omega}{1 - \tau^2 \omega^2} \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Bode Plot of Pure Capacitive Process

Pure capacitive process (also known as integrating system) has the following transfer function:

$$G(s)=\frac{K_p}{s}$$

By substituting $s = j\omega$, we get

$$G(j\omega) = \frac{K_p}{j\omega} = \frac{K_p}{j\omega}\frac{j\omega}{j\omega} = -j\frac{K_p}{\omega}$$
$$AR = \sqrt{0^2 + (-Kp/\omega)^2} = \frac{K_p}{\omega} \quad \text{and} \quad \phi = \tan^{-1} - \infty = -90^{\circ}$$

Bode Plot of Pure Capacitive Process (contd..)

<ロト <回ト < 注ト < 注ト

Bode Plot of Dead-time System

For the dead-time system,

$$Y(t) = X(t - \tau_d) \qquad \qquad G(s) = \frac{Y(s)}{X(s)} = e^{-\tau_d s}$$

Amplitude ratio (AR) and phase shift (ϕ) of dead-time system is given by

$$AR = 1$$
 $\phi = -\tau_d \omega$

Bode Plot of Dead-time System (contd..)

<ロト <回ト < 注ト < 注ト

Effect of K in Bode Plot for $G(s) = \frac{K}{\tau s + 1}$

The presence of a constant in the overall transfer function will move the entire AR curve vertically by a constant amount. It has no effect on the phase shift.

Systems in Series

The overall transfer function is:

$$G(s) = G_1(s)G_2(s)\cdots G_N(s)$$

Overall phase shift ϕ :

$$\phi = \phi_1 + \phi_2 + \dots + \phi_N$$

Overall amplitude ratio:

$$AR = (AR)_1 (AR)_2 \cdots (AR)_N$$

$$\log(AR) = \log(AR)_1 + \log(AR)_2 + \cdots + \log(AR)_N$$

Systems in Series (contd..)

If the transfer function of a system can be factored into the product of N transfer functions of simpler systems, the following rules can be used for the construction of Bode plots:

- The logarithm of the overall amplitude ratio is equal to the sum of the logarithms of the amplitude rations of the individual systems.
- The overall phase shift is equal to the sum of the phase shifts of the individual systems.
- The presence of a constant in the overall transfer function will move the entire AR curve vertically by a constant amount. It has no effect on the phase shift.

Bode Plot of:
$$G = \frac{3(s+1)}{(0.05s+1)(10s+1)}$$

Constructing the Bode Plot: Transfer function of the given system is factored into a product of four transfer functions as below:

3,
$$\frac{1}{10s+1}$$
, $(s+1)$, $\frac{1}{0.05s+1}$

with the following corner frequencies (in the same order):

 $\omega_1 = \text{none}, \qquad \omega_2 = 1/10 = 0.1, \qquad \omega_3 = 1/1 = 1, \qquad \omega_4 = 1/0.05 = 20$

The following four regions are identified on the frequency (in ω) scale:

$0 \le \omega \le \omega_2,$	$\omega_2 \leq \omega \leq \omega_3,$	$\omega_3 \le \omega \le \omega_4,$	$\omega_4 \le \omega < \infty$
$0 \le \omega \le 0.1,$	$0.1 \leq \omega \leq 1,$	$1 \le \omega \le 20,$	$20 \le \omega < \infty$

Frequency region	Slopes of the asymptotes of the transfer functions					
	K=3	$\frac{1}{10s+1}$	(s+1)	$\frac{1}{0.05s+1}$	Overall	
$0 \le \omega \le 0.1$	0	0	0	0	0	
$0.1 \le \omega \le 1$	0	$^{-1}$	0	0	-1	
$1 \le \omega \le 20$	0	$^{-1}$	1	0	0	
$20 \le \omega < \infty$	0	-1	1	$^{-1}$	-1	

・ロト ・個ト ・ヨト ・ヨト

Bode Plot of
$$G = 10^4 \frac{(s+1)^2}{(s+100)^2}$$

▲口▶ ▲□▶ ▲目▶ ▲目▶ 三日 ● ④ ●

Bode Plot of
$$G = 10^4 \frac{(s+1)^2}{(s+100)^2}$$
 (contd...)

SSN

・ロト ・四ト ・ヨト ・ヨト

The transfer function is rewritten as:

$$egin{aligned} G &= 10^4 \cdot (s+1) \cdot (s+1) \cdot rac{1}{100 \left(rac{s}{100}+1
ight)} \cdot rac{1}{100 \left(rac{s}{100}+1
ight)} \ &= (s+1) \cdot (s+1) \cdot rac{1}{(0.01s+1)} \cdot rac{1}{(0.01s+1)} \end{array}$$

