CH2407 Process Equipment Design II

www.msubbu.in

Evaporators

Dr. M. Subramanian

Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam – 603 110, Kanchipuram (Dist) Tamil Nadu, India msubbu.in[AT]gmail.com

12-Sep-2011

Introduction

- An evaporator is used to evaporate a volatile solvent, usually water from a solution
- Its purpose is to concentrate non-volatile solutes such as organic compounds, inorganic salts, acids or bases
- Desired product can be precipitated crystals, concentrated solutions or the solvent (boiler feed water, distilled water)

Quintuple-Effect, Forced-Circulation NaCl Evaporator

Three-stage, Forced-Circulation Evaporator used to concentrate wet process phosphoric acid

Evaporator Types

- Natural circulation
 - first developed commercially
 - represent the large number of units in operation
 - the density difference between the liquid and vapor generated is utilized to create circulations
 - tubes: horizontal or vertical with liquid inside or outside the tubes
- Forced circulation

Horizontal tube evaporator: (A) Steam inlet: (B) Vent j non-condensed gas; (C) Condensate outlet; (D) Liquor inlet; (Liquor outlet; (F) Sight glass; (G) Vapor outlet.

Calandria Evaporator

It was the "Standard Evaporator", now called as calandria evaporator, or vertical short tube evaporator

Used mainly for batch concentration of liquids

Vertical tube evaporator: (A) Tube sheets; (B) Downtake; (C) Condensate outlet; (D) Non-condensed gas outlet; (E) Liquor inlet; (F) Thick liquor outlet.

Standard Evaporator

- Cross sectional area of central downtake: 75 150% of the total cross sectional flow area of tubes
- Tubes: 1 to 4 inch dia; 3 to 5 ft long
 - Std: 2 inch dia, 5 ft long

Basket Type Evaporator

Annular downtake

Long Tube Vertical Evaporator

12-Sep-2011 M Subramanian

Rising film Evaporator

Falling film Evaporator

Forced Circulation Evaporators

Forced-Circulation Evaporator with external heating element

- A: Product
- B: Vapor
- C: Concentrate
- D: Heating System
- E: Condensate
- 1) Heat Exchanger
- 2) Flash Vessel (Separator)
- 3) Circulation Pump
- 4) Concentrate Pump

Evaporator - Applications

Long Tube Vertical Evaporators

- (Rising, Falling films)
- Acid Sulfite Liquor
- Ammonium Nitrate
- Calcium Chloride
- Caustic Soda
- Coffee Extract
- Gelatin
- Glue
- Kraft Liquor
- Magnesium Chloride
- Pectin
- Phosphoric Acid (Bright Dip)
- Pickle Liquor
- Sodium Aluminate
- Sodium Nitrate
- Sodium Sulfate
- Soybean Oil
- Sugars
- Sulfuric Acid
- Syrups
- Tomato Juice
- Urea

Forced-Circulation Evaporators:

Ammonium Sulfate Calcium Chloride Caprolactum Caustic Potash Citric Acid Magnesium Chloride Mono-Sodium Glutamate Sodium Carbonate Monohydrate Sodium Chloride Sodium Dichromate Sodium Dichromate Sodium Sulfate Super-Phosphoric Acid Urea Wet Process Phosphoric Acid

Calandria Evaporators:

The calandria evaporator can be used for many of the applications described for both forcedcirculation and LTV rising-and -falling-film evaporators.

Evaporator Sizing

- Forced circulation and falling film evaporators have higher heat transfer coefficients
- With the approximate values of heat transfer coefficients, an estimate can be made of a possible configuration for a given duty (diameter, length, number of tubes)
- Heat transfer correlations can be applied to these geometrical data, and area can be recalculated

Heat Transfer Coefficient

Boiling point Elevation

Duhring plot for boiling point of sodium chloride solutions

Double Effect Evaporator (Forward Feed)

Multiple Effect Evaporators

- To increase the steam economy
- Vapor from one effect serves as the heating medium for the next one
- The effects are always numbered in the direction of steam flow
- Designed on the basis: capacity of the effects are nearly the same, A – same

$$\Delta T \propto \frac{1}{U} \qquad \Delta T_1 : \Delta T_2 : \Delta T_3 = \frac{1}{U_1} : \frac{1}{U_2} : \frac{1}{U_3}$$

- Forward feed no pumping of slurry is required
- Backward feed concentrated slurry is heated by high pressure steam, which reduces the size of the unit

Effect of Boiling Point Elevation

- The capacity of evaporator is reduced
- The capacity of triple effect evaporator is less than one third of the three single effects

