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Objectives

To give an idea about increasing the rate of heat transfer by
extending the heat transfer surfaces (i.e., fins).
To derive the equation for steady state heat conduction
through simple extended surface geometries
To estimate the performance parameters of fins.
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Outcome

To understand the need and usage of fins.
To calculate the heat transfer augmentation by simple fins.
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Overall Heat Transfer Coefficient (U)

Q =
∆T
R = UA∆T = U1A1∆T = U2A2∆T
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Overall Heat Transfer Coefficient (contd..)

T1 − T1,s =
Q

h1A1
T1,s − T2,s =

xw Q
kw Am

T2,s − T2 =
Q

h2A2

Adding the numerator and denominator separately, we get

T1 − T2 = ∆T = Q
[ 1

h1A1
+

xw
kw Am

+
1

h2A2

]
From the relation Q = U1A1∆T , we get

Q
U1A1

= Q
[ 1

h1A1
+

xw
kw Am

+
1

h2A2

]
i.e.,

1
U1A1

=
1

h1A1
+

xw
kw

A1
Am

+
1

h2A2
=

1
U2A2
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Overall Heat Transfer Coefficient (contd..)

For highly conducting and / or thin-walled tubes, we can neglect
the conductive resistance part, and hence:

1
U1A1

=
1

h1A1
+

1
h2A2
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Fins

Q = hA(Ts − T∞)

The rate of convective heat transfer from a surface at Ts can be
increased by two methods:

increasing the convective heat transfer coefficient, h
increasing the surface area, A

Increasing the convective heat transfer coefficient may not be
practical and/or adequate. An increase in surface area by attaching
extended surfaces called fins to the surface is more convenient.
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Examples of Extended Surfaces (Fins):
Thin rods on condenser in back of refrigerator
Honeycomb surface of a car radiator
Corrugated surface of a motorcycle engine
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Fins
Finned surfaces are commonly used in practice to enhance heat
transfer. In the analysis of fins, we consider steady operation with
no heat generation in the fin. We also assume that the convection
heat transfer coefficient, h to be constant and uniform over the
entire surface of the fin.
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One Dimensional Fin Equation

Heat in at x by conduction = Heat out by conduction at (x + ∆x)
+ Heat out by convection
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One Dimensional Fin Equation (contd..)

i.e.,

Net heat in by conduction = Heat out by convection

i.e.,
(Aq)|x − (Aq)|x+∆x = hP∆x(T − T∞) (1)

Dividing throughout by ∆x , and, from the definition of derivative,
(for ∆x → 0)

−((Aq)|x+∆x − (Aq)|x )

∆x = −d(Aq)

dx
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One Dimensional Fin Equation (contd..)

From Fourier’s law of conduction, q = −k dT
dx . Therefore,

−d(Aq)

dx = Ak d2T
dx2

Using this in Eqn.(1), we get

Ak d2T
dx2 = hP(T − T∞)

i.e.,
d2T
dx2 −

hP
Ak (T − T∞) = 0

or,
d2θ

dx2 −m2θ = 0

where
m2 =

hP
Ak and θ = (T − T∞)
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One Dimensional Fin Equation (contd..)
General Solution of ODE

d2θ

dx2 −m2θ = 0

The above equation is a linear homogeneous, second-order ordinary
differential equation. The solution of which is given by

θ = C1e−mx + C2emx

Or,
θ = C ′1 coshmx + C ′2 sinhmx

Or,
θ = C ′′1 coshm(L− x) + C ′′2 sinhm(L− x)
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Fin - Boundary Conditions
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Long Fin

θ = C1e−mx + C2emx (1)
For a sufficiently long fin, it is reasonable to assume that the
temperature of the fin tip approaches T∞.
Boundary Conditions (BC):

BC-1 θ = θo = (To − T∞) at x = 0
BC-2 θ = 0 at x →∞

Application of BC-2 to Eqn.(1) gives

0 = C1e−∞m + C2e∞m

= 0 + C2C3

=⇒ C2 = 0

And, from BC-1 to Eqn.(1) we get

θo = C1e−0m =⇒ C1 = θo
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Long Fin (contd..)
Hence,

θ = θoe−mx =⇒ θ

θo
= e−mx

i.e.,
θ

θo
=

T − T∞
To − T∞

= e−mx

Heat flow through the fin (Q) is given by

Q =

ˆ L

x=0
hPθdx

or,
Q = −Ak dθ

dx

∣∣∣∣
x=0

From any of the above two equations, we get Q = Akmθo.
i..e,

Q = θo
√

PhkA
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Pin Fin
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Fin Efficiency
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Fin Efficiency (contd..)

Temperature of a fin gradually drops along the length. In the
limiting case of zero thermal resistance (k →∞), the temperature
of the fin will be uniform at the base value of To. The heat
transfer from the fin will be maximized in this case:

Qfin,max = hAfin(To − T∞)

Fin efficiency (ηfin) can be defined as:

ηfin =
Qfin

Qfin,max
=

actual heat transfer rate from the fin
ideal heat transfer rate from the fin

(if the entire fin were at base temperature)

Fin efficiency decreases with increasing fin length because of
decrease in fin temperature with length.

Dr. M. Subramanian Conduction



Fin Efficiency (contd..)

For the long-fin

ηfin =
Qfin

Qfin,max
=

√
PhkA(To − T∞)

hAf (To − T∞)
=

√
PhkA
hPL =

1
L

√
kA
hP =

1
mL
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Fin Effectiveness
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Fin Effectiveness (contd..)

The performance of fins is judged on the basis of the enhancement
in heat transfer relative to the no-fin case, and expressed in terms
of the fin effectiveness:

εfin =
Qfin

Qno fin
=

heat transfer rate with fin
heat transfer rate without fin

εfin =


< 1 fin act as insulation
= 1 fin does not affect heat transfer
> 1 fin enhances heat transfer

ηfin < 1 but εfin > 1
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Fin Effectiveness (contd..)

For the long-fin

εfin =
Qfin

Qno fin
=

√
PhkA(To − T∞)

hA(To − T∞)
=

√
PhkA
hA =

√
kP
hA

and,
εfin
ηfin

=
PL
A

Effectiveness of fin must be greater than 2; otherwise don’t use the
fin.
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Fins - Requirements

Fins are generally used where convective heat transfer
coefficient (h) values are relatively low. i.e., when air or gas is
the medium and heat transfer is by natural convection.
Fin material should be of highly conductive materials.
Lateral surface area of the fin should be as high as possible.
The efficiency of most fins used in practice is above 90%.
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Solved Problems

Example 1: Effect of Diameter and Thermal Conductivity on Heat
Transfer through Fin
A long, circular aluminium rod attached at one end to the heated
wall and transfers heat through convection to a cold fluid.
(a) If the diameter of the rod is triples, by how much would the

rate of heat removal change?
(b) If a copper rod of the same diameter is used in place of

aluminium, by how much would the rate of heat removal
change?
aluminum: k = 240 W/(m.K); copper: k = 400 W/(m.K)
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Solved Problems (contd..)

Solution:
For long-fin,

Q = θo
√

PhkA

For cyldrical fin,

P = πD and A =
π

4D2 =⇒ PA =
π

4D3

Therefore,
Q ∝

√
kD3

(a) D2/D1 = 3. Therefore,

Q2
Q1

=

√
D3
2√

D3
1

=

√(D2
D1

)3
=
√
33 = 5.2

i.e., there is a 520% increase in heat transfer.
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Solved Problems (contd..)

(b) k2/k1 = 400/240 = 1.667. Therefore,

Q2
Q1

=

√
k2
k1

=
√
1.667 = 1.29

i.e., there is a 29% increase in heat transfer.
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Fin with Negligible Heat Transfer at the Tip

θ = C1 coshm(L− x) + C2 sinhm(L− x) (1)

The heat transfer area at the fin tip is generally small compared
with the lateral area of the fin for heat transfer. For such
situations, the heat loss from the fin tip is negligible compared
with that from lateral surfaces, and the boundary condition at the
tip characterizing this situation is taken as dθ/dx = 0 at x = L.
Boundary Conditions (BC):

θ = θo = (To − T∞) at x = 0
dθ
dx = 0 at x = L

Differentiating Eqn.(1),

dθ
dx = −mC1 sinhm(L− x)−mC2 coshm(L− x)
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Fin with Negligible Heat Transfer at the Tip (contd..)
Using B.C 2 on the above,

0 = −mC1 sin hm0−mC2 coshm0
00− C2 (∵ sinh 0 = 0 and cosh 0 = 1)

=⇒ C2 = 0

Therefore, Eqn.(1) becomes,

θ = C1 coshm(L− x)

From B.C 1, at x = 0, θ = θo. Using this in above equation,

θo = C1 coshmL =⇒ C1 =
θo

coshmL
Hence, we get

θ

θo
=

coshm(L− x)

coshmL
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Fin with Negligible Heat Transfer at the Tip (contd..)

Taking derivative of the temperature distribution equation, and at
x = 0 we get

dθ
dx

∣∣∣∣
x=0

= −mθo
sinhm(L− 0)

coshmL = −θom tanhmL

Heat transfer through the fin is given by

Q = − kAdθ
dx

∣∣∣∣
x=0

= kAθom tanhmL = θo
√

PhkA tanhmL
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Fin with Specified Temperature at the Ends

θ = C1e−mx + C2emx (1)

i.e., at x = 0, T = To; and, at x = L, T = TL.
B.C.:

θ = θo at x = 0
θ = θL at x = L

Using B.C 1 in Eqn.(1), we get

θo = C1 + C2 =⇒ C1 = θo − C2 (2)

And, using B.C 2 in Eqn.(1), we get

θL = C1e−mL + C2emL (3)
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Fin with Specified Temperature at the Ends (contd..)
Using Eqn.(2) in Eqn.(3), we get

θL = (θo − C2)e−mL + C2emL

= θoe−mL − C2e−mL + C2emL

= θoe−mL + C2(emL − e−mL)

=⇒ C2 =
θL − θoe−mL

emL − e−mL (4)

Using Eqn.(4) in Eqn.(2), we get

C1 = θo −
θL − θoe−mL

emL − e−mL

=
θo(emL − e−mL)− θL + θoe−mL

emL − e−mL

=⇒ C1 =
θoemL − θL
emL − e−mL (5)
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Fin with Specified Temperature at the Ends (contd..)
Substituting for C1 and C2 in Eqn.(1), we get

θ =
θoemL − θL
emL − e−mL e−mx +

θL − θoe−mL

emL − e−mL emx

=
θoemLe−mx − θoe−mLemx + θLemx − θLe−mx

emL − e−mL

=
θo
(
em(L−x) − e−m(L−x)

)
+ θL(emx − e−mx )

emL − e−mL

We know,
emx − e−mx

2 = sinhmx

Using this in above, we get

θ =
θo sinhm(L− x) + θL sinhmx

sinhmL
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Fin with Specified Temperature at the Ends (contd..)

Rate of heat transfer through the fin at x = 0 is given by

Qo = −kA dθ
dx

∣∣∣∣
x=0

= −kA −mθo coshm(L− x) + mθL coshmx
sinhmL

∣∣∣∣
x=0

= kAmθo
coshmL− θL/θo

sinhmL

i.e.,
Qo = θo

√
PhkAcoshmL− θL/θo

sinhmL
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Solved Problem

Example 1: Fin with Adiabatic Tip
An aluminum pot is used to boil water as shown below. The
handle of the pot is 20 cm long, 3 cm wide, and 0.5 cm thick. The
pot is exposed to room air at 25◦C, and the convection coefficient
is 5 W/m2.◦C. Can you touch the handle when the water is
boiling? What would be the temperature near the end of the
handle? (k for aluminum is 237 W/m.◦C)
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Solved Problems (contd..)

Solution:
We can model the pot handle as an extended surface. Assume that
there is no heat transfer at the free end of the handle. For this
case,

T − T∞
To − T∞

=
coshm(L− x)

coshmL
where

m =

√
Ph
kA

Here, h = 5 W/m2.◦C, P = 2(W + B) = 2(0.03 + 0.005) = 0.07
m, k = 237 W/m.◦C, A = WB = 0.03× 0.005 = 0.00015 m2, and
L = 0.2 m.
Therefore,

m =

√
Ph
kA =

√
0.07× 5

237× 0.00015 = 3.138
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Solved Problems (contd..)

Hence,

T − T∞
To − T∞

=
coshm(L− x)

coshmL
T − 25
100− 25 =

cosh
(
3.138× (0.2− 0.2)

)
cosh(3.138× 0.2)

=⇒ T (x = 0.2) = 87.3◦C

Since T near the end is 87.3◦C, it is not safe to touch the end.
If a stainless steel handle is used instead, what will happen? For
stainless steel, the thermal conductivity k = 15 W/m.◦C (Ans:
37.3◦C; safer than the previous case)
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