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Objectives

To introduce the methodologies of solving simple unsteady
heat conduction problems.
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Outcome

To obtain the equation for variation of temperature with time,
using lumped system approach.
To estimate the parameters of one dimensional unsteady heat
transfer using transient-temperature charts.
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Lumped Parameter Formulation

A lumped parameter formulation is an approximation which
facilitates the solution of heat transfer problems. The key
assumption is the neglect of temperature gradients (dT/dx) inside
the body of volume V and surface area A, so that its temperature
is only a function of time. However, this assumption clearly
amounts to the neglect of the heat conduction processes inside the
material and should be used with caution.
This approximation is valid if

Bi =
hL
k < 0.1

where L = V /A
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Lumped Parameter Formulation (contd..)

If the only mechanism for energy exchange with the surroundings is
convection through the bounding surface, the differential thermal
energy balance equation (in W) becomes

−hA(T − T∞) = ρCPV dT
dt

This is a first order ordinary differential equation which can be
solved easily. Rearranging the above,

dT
dt +

hA
ρCPV (T − T∞) = 0

dT
dt + m(T − T∞) = 0

where
m =

hA
ρCPV
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Lumped Parameter Formulation (contd..)

Let θ = T − T∞. Then, dθ
dt =

dT
dt . Therefore,

dθ
dt + mθ = 0

Solution of the above ODE is given by

dθ
θ

= −mdt

Integrating,
ln θ = −mt + C1

Initial condition: At t = 0, θ = θ0 = T0 − T∞. Substituting this in
the above, we get

ln θ0 = C1

Hence,
ln θ = −mt + ln θ0 =⇒ θ

θ0
= e−mt

Dr. M. Subramanian Conduction



Lumped Parameter Formulation (contd..)

T − T∞
T0 − T∞

= e−mt

m =
hA

ρCPV =
1
τ
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Biot Number

Bi =
hL
k =

resistance to internal heat flow
resistance to external heat flow

Whenever the Biot number is small, the internal temperature
gradients are also small and a transient problem can be treated by
the“lumped thermal capacity” approach. The lumped capacity
assumption implies that the object for analysis is considered to
have a single temperature.
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Biot Number (contd..)

TH − TS
TS − T∞

=
L/(kA)

1/(hA)
=

internal resistance to H.T
external resistance to H.T =

hL
k = Bi

Rint � Rext: the Biot number is small and we can conclude

TH − TS � TS − T∞ and in the limit TH ≈ TS

Rext � Rint: the Biot number is large and we can conclude

TS − T∞ � TH − TS and in the limit TS ≈ T∞
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A 150 micrometer diameter steel sphere of ρ = 7, 700 kg/m3,
CP = 460 J/(kg.K), k = 25 W/(m.K) is quenched from a
temperature of 1200 K using an air jet with h = 100 W/(m2.K), at
room temperature (T∞ = 300 K). Calculate the value of Bi for
this system and, if possible, use the lumped parameter model to
estimate the time it takes for the temperature of the sphere to
reach 325 K.
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Use of Transient Temperature Charts
If the lumped capacitance approximation can not be made,
consideration must be given to spatial, as well as temporal,
variations in temperature during the transient process.

For slab of of thickness 2L, considering symmetry with respect to
x = 0 at the midplane, with constant k, and no heat generation,
we have

∂2T
∂x2 =

1
α

∂T
∂t in 0 < x < L, for t > 0

Dr. M. Subramanian Conduction



Use of Transient Temperature Charts (contd..)
Slab

Boundary and Initial Conditions:

∂T
∂x = 0 at x = 0, for t > 0

k ∂T
∂x + hT = hT∞ at x = L, for t > 0

T = Ti for t = 0, in 0 ≤ x ≤ L
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Use of Transient Temperature Charts (contd..)
Slab

Dimensionless Quantities:

θ =
T (x , t)− T∞

Ti − T∞
dimensionless temperature

X =
x
L dimensionless coordinate

Bi =
hL
k Biot number

τ =
αt
L2 dimensionless time, or Fourier number
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Fourier Number (Fo)

τ = Fo =
αt
L2 =

k(1/L)L2 ∆T
ρCPL3 ∆T/t =

rate of heat conduction
across L in volume L3

rate of heat storage
in volume L3

Fourier number is a measure of heat conducted through a body
relative to heat stored. Thus, a large value of the Fourier number
indicates faster propagation of heat through a body.
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Use of Transient Temperature Charts (contd..)
Slab

Dimensionless Equations:

∂2θ

∂X 2 =
∂θ

∂τ
in 0 < X < 1, for τ > 0

∂θ

∂X = 0 at X = 0, for τ > 0

∂θ

∂X + Bi θ = 0 at X = 1, for τ > 0

θ = 1 in 0 ≤ X ≤ 1, for τ = 0

For plane wall, the solution involves several parameters:

T = T (x , L, k, h, α,Ti ,T∞, t)

By using dimensional groups, we can reduce the number of
parameters.

θ = θ(X ,Bi,Fo)
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Use of Transient Temperature Charts (contd..)
Slab

The solution for temperature will now be function of the
dimensionless quantities:

θ = θ(X ,Bi,Fo)

The transient temperature charts shown in next slides for a large
plane wall (also available for long cylinder, and sphere) were
presented by M. P. Heisler in 1947 and are called Heisler charts.
There are three charts associated with each geometry:

1 The first chart is to determine the temperature T0 at the
center of the geometry at a given time t.

2 The second chart is to determine the temperature at other
locations at the same time in terms of T0.

3 The third chart is to determine the total amount of heat
transfer up to the time t.

These plots are valid for Fo > 0.2.
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Heisler Charts

Assumptions:
Uniform initial temperature (Ti) over the entire body.
Constant T∞, step change in temperature.
Simple geometry: slab, cylinder, and sphere.

Limitations:
No heat generation.
For Fo > 0.2.

Dr. M. Subramanian Conduction



Heisler Charts (contd..)
Mid Plane Temperature:
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Heisler Charts (contd..)

Temperature Distribution:
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Heisler Charts (contd..)

Change in Thermal Energy Storage:

Q0 = ρVCP(Ti − T∞)
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Heisler Chart Usage - Solved Problem

Example 1: Transient Heat Transfer in Cylinder
A 2 m long 0.2 m diameter steel cylinder (k = 40 W/m.K,
α = 1× 10−5 m2/s, ρ = 7854 kg/m3, CP = 434 J/kg.K), initially
at 400◦C, is suddenly immersed in water at 50◦C for quenching
process. If the convection coefficient is 200 W/m2.K, calculate
after 20 minutes:
(a) the center temperature
(b) the surface temperature
(c) the heat transfer to the water
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Heisler Chart Usage - Solved Problem (contd..)

Solution:
L/D = 2/0.2 = 10; we assume infinitely long cylinder.
Check Lumped Capacitance Method (LCM):

Bi =
hL
k =

h(V /A)

k =
h(ro/2)

k =
200× (0.1/2)

40 = 0.25

Since Bi > 0.25, we can not use LCM, instead we can use Heisler
charts.
From the definition of Bi as given in Heisler chart,

Bi =
hro
k =

200× 0.1
40 = 0.5 =⇒ 1

Bi =
1
0.5 = 2

and,

Fo = τ =
αt
r2
o

=
1× 10−5 × (20× 60)

0.12 = 1.2

Bi2τ = 0.52 × 1.2 = 0.3
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Heisler Chart Usage - Solved Problem (contd..)

Centreline Temperature (T0):
For 1/Bi = 2, and τ = 1.2, from figure (a), we get θ0 = 0.38.

θ0 =
T0 − T∞
Ti − T∞

= 0.38

=⇒ T0 = (400− 50)× 0.38 + 50 = 183◦C
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Heisler Chart Usage - Solved Problem (contd..)

Surface Temperature (T ):
For r/ro = 1, and 1/Bi = 2, from figure (b), we get θ = 0.78.

θ =
T − T∞
T0 − T∞

= 0.78

=⇒ T = (183− 50)× 0.78 + 50 = 153.74◦C
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Heisler Chart Usage - Solved Problem (contd..)

Heat Transfer (Q):
For Bi2τ = 0.3, and Bi = 0.5, from figure (c), we get Q/Q0 = 0.6.

Q0 = ρVCP(Ti − T∞)

= 7854×
(
π × 0.12 × 2

)
× 434× (400− 50)

= 7.5× 107 J
Q = Q0 × 0.6 = 4.5× 107 J
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