CH 2252 Instrumental Methods of Analysis

Unit – I

www.msubbu.in

Interactions of Photon with Matter

M. Subramanian

Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam – 603 110, Kanchipuram (Dist) Tamil Nadu, India msubbu.in@gmail.com

Contents

• Interaction of photons with matter, absorbance, & transmittance and their relationship

Type of quantum change:	Change of spin	Chan orien	ge of Cha tation confi	ange of guration Char	nge of electron distri	Change of nuclear bution configuration
0				or		
	10 ⁻²	1	100	104	100	Wavenumber, cm ⁻¹ 10 ⁸
10 m	100 cm	1 cm	100 µm	1000 nm	10 nm	Wavelength 100 pm
3×10^{6}	3×10^{8}	3×10^{10}	3×10^{12}	3×10^{14}	3×10^{16}	Frequency. Hz 3×10^{18}
10 ⁻³	10 ⁻¹	10	10 ³	10 ⁵	107	Energy, J/mol
Type of NN spectroscopy:	AR ES	SR Micro	wave Infr	rared Visib ultrav	le and X-r. violet	ау ү-гау

Region of the spectrum	Main interactions with matter
Radio	Collective oscillation of charge carriers in bulk material
Microwave through far infrared	Plasma oscillation, molecular rotation
Near infrared	Molecular vibration, plasma oscillation (in metals only)
Visible	Molecular electron excitation (including pigment molecules found in the human retina), plasma oscillations (in metals only)
Ultraviolet	Excitation of molecular and atomic valence electrons, including ejection of the electrons
X-rays	Excitation and ejection of core atomic electrons
Gamma rays	Energetic ejection of core electrons in heavy elements, excitation of atomic nuclei, including dissociation of nuclei

Absorption of Radiation

Absorbance

 $\log \rightarrow base 10$

Measuring Transmittance and Absorbance

$$A = \log \frac{P_0}{P} \approx \log \frac{P_{\text{solvent}}}{P_{\text{solution}}}$$

Beer-Lambert's law

$$A = abc$$

where a is absorptivity (L.g⁻¹.cm⁻¹)

$$A = \varepsilon bc$$

where ϵ is molar absorptivity (L.mol⁻¹.cm⁻¹)

Absorbance – Transmittance Relations

- Transmittance: $T = P / P_0$ % Transmittance: %T = 100 T
- **Absorbance:** $A = log (P_0 / P)$

$$A = log (1 / T) = -log (T)$$

```
A = log (100 / %T)
```

```
A = 2 - log(\%T)
```


$$\log \frac{P_0}{P} = \varepsilon bc = A$$

Deviations from Beer-Lambert's Law

- Deviations in absorptivity coefficients at high concentrations (> 0.01 M) due to electrostatic interactions between molecules in close proximity
- Scattering of light due to particles in the sample
- Fluorescence or phosphorescence of the sample
- Changes in refractive index at high analyte concentration
- Shifts in chemical equilibrium as a function of concentration
- Non-monochromatic radiation
- Stray light

Beer-Lambert's law at high concentrations

