CH2303 Chemical Engineering Thermodynamics I

Unit - II

First Law of Thermodynamics

Dr. M. Subramanian

Associate Professor
Department of Chemical Engineering
Sri Sivasubramaniya Nadar College of Engineering
Kalavakkam - 603 110, Kanchipuram (Dist)
Tamil Nadu, India
msubbu.in[AT]gmail.com

Contents

- Statements of first law for the non flow and flow systems, enthalpy and heat capacity

First Law of Thermodynamics

- It's the law of conservation of energy
- Change in total energy of the system is compensated by an equal and opposite change in the total energy of the surroundings.

For a closed system:

SURROUNDING

In many applications of the first law, the system undergoes no change in external potential or kinetic energy, but only changes in internal energy. For these non-flow processes, the first law becomes:

$$
\Delta U=Q+W
$$

Sign conventions for heat and work

There are two sign conventions in common use.

$\Delta U=Q-W$

2
Positive heat in, positive work in convention

$$
\Delta \mathrm{U}=\mathrm{Q}+\mathrm{W}
$$

We use the above convention

Sign conventions for heat and work (contd.)

- The first is still the most common in the English-speaking world and probably dates back to the introduction of steam engines. In that era, engineers were particularly interested in heat engines for pumping water or driving machinery. The desired output was work and the required input was heat. It made sense to describe both as positive quantities.
- The second sign convention, which I favour, is the most common in the non-English-speaking world. According to this convention heat and work are both taken as positive when their direction is into the system of interest.
- In my opinion the second convention is the most consistent, as all transfers or interactions at the boundary can be treated in the same way: they are taken as positive when inwards and negative when outwards. We will use the second convention.

Enthalpy

Enthalpy denoted as H is defined as below:

$$
H=U+P V
$$

Differentiating,

$$
d H=d U+P d V+V d P
$$

Substituting for $d U$ from

$$
\begin{aligned}
d U & =d Q+d W \\
& =d Q-P d V
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
d H & =d Q-P d V+P d V+V d P \\
& =d Q+V d P
\end{aligned}
$$

Specific Heat

By definition

$$
\begin{align*}
C_{P} & =\left(\frac{d Q}{d T}\right)_{P} \tag{1}\\
C_{V} & =\left(\frac{d Q}{d T}\right)_{V}
\end{align*}
$$

(2)

The mass maintains a constant pressure in the cylinder.

Constant Volume Heat Addition

Constant Pressure Heat Addition

C_{P} and C_{V}

- We expect that C_{p} will be bigger than C_{V} for the simple reason that more heat will need to be added when heating at constant pressure than when heating at constant volume. This is because in the latter case additional energy will be expended on doing work on the atmosphere as the gas expands. It turns out that indeed C_{p} is bigger than C_{V} in practice

Specific hoat capacities at 25 C asd 1 atim				
Substance	Phase	$\begin{gathered} C_{p} \\ \text { (RFD } \end{gathered}$	$\begin{gathered} C_{p, m} \\ \operatorname{limin}^{2}-\Omega \end{gathered}$	Cym HifolHy
At (Sealcuel, dry 0 O)	[as	1	39.67	2076
At (roen coctuens)	离	101	29.19	2085
Argoo	grs	052	20.79	12.47
Cubon bioxde 002	-as	084	35.94	28.46
Hrbem	1080	5.19	10,79	1247
Mratert	gis	14.	18.82	
Wimogel	7n	1.04	29.12	20.8
Wrom	嗗	105	10.79	12.47
Opyen	gil	092	1435	
Wate (tvenm)	par $100-$?	2.08	17.47	28.03
Witer	Hqud (25 C)	4,18	75.33	74.53
Watat (ise)	ratid $\left.-10^{\circ} \mathrm{C}\right)$	2.05	38,00	

Specific heat values: Notice, however, that, because water has a low molecular weight (molar mass), water has the largest specific heat capacity of any common liquid or solid. (The specific heat capacities of gaseous H_{2} and He are, unsurprisingly, larger still. A kilogram of hydrogen is an enormous number of molecules, so it takes a lot of heat to warm them all up.)

For liquidsIn general, $\mathrm{Cp}-\mathrm{Cv}$ is so small in comparison with gases; but there are cases where $\mathrm{Cp}-\mathrm{Cv}$ is higher than R .
Ref: Norman O. Smith, J. Chem. Educ., 1965, 42 (12), p 654

The heat capacity C_{P} is less than C_{V} for $\mathrm{H} 2 \mathrm{O}(I)$ near $4^{\circ} \mathrm{C}$. Explain this result.
$\mathrm{Cp}<\mathrm{CV}$ is valid if V decreases with T at constant P .
This unusual behavior occurs because the density of water increases with temperature in this range of 0 to $4^{\circ} \mathrm{C}$. Therefore, work is done by the surroundings on the systeri as water is heated at constant P between $0{ }^{\circ} \mathrm{C}$ and $4{ }^{\circ} \mathrm{C}$.

S3n

Relation between Specific heats and Energy
First law for closed system Properties

$$
d U=d Q+d W
$$

For reversible process, $d W=-P d V$. Therefore

$$
d U=d Q-P d V
$$

For a constant volume process, the above equation reduces to

$$
d Q=d U
$$

i.e., Amount of heat added during a constant volume process equals the internal energy change.

From the definition of enthalpy, and using first law for a closed system, we can obtain

$$
d H=d Q+V d P
$$

For a constant pressure process, the above equation reduces to

$$
d Q=d H
$$

i.e., Amount of heat added during a constant pressure process equals the enthalpy change.

From phase rule, it can be shown that the state of single component single phase system, can be specified by two independent variables of the system. Hence internal energy (U, a state property) can be considered as a function of any two independent variables of the system. Let us consider U as a function of T, and V.

$$
U=U(T, V)
$$

Differentiating,

$$
d U=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V
$$

At constant volume,

$$
d U=\left(\frac{\partial U}{\partial \bar{x}}\right)_{V} d T
$$

Dividing by $d T$ at constant V,

$$
\left(\frac{d U}{d T}\right)_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}
$$

Using the above, for a closed system involving constant volume change

$$
C_{V}=\left(\frac{d Q}{d T}\right)_{V}=\left(\frac{d U}{d T}\right)_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}
$$

i.e.,

$$
C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}
$$

U \& H for Ideal Gases

For ideal gases, U is a function of T alone. Hence the above equation can be written as,

$$
C_{V}=\frac{d U}{d T}
$$

Likewise, by considering H as a function of T and P, it can be proved that,

$$
C_{P}=\left(\frac{\partial H}{\tilde{\partial} W}\right)_{P}
$$

For ideal gases, H is a function of T alone. Hence the above equation can be written as,

$$
C_{P}=\frac{d H}{d T}
$$

Relation between C_{P} and C_{V} for an ideal gas

From Eqn.(2.4), we have

$$
C_{P}=\frac{d H}{d T}
$$

From the definition of H,

$$
H=U+P V
$$

For an ideal gas

$$
P V=R T
$$

Hence, we have

$$
\begin{aligned}
C_{P} & =\frac{d(U+P V)}{d T} \\
& =\frac{d(U+R T)}{d T} \\
& =\frac{d U}{d T}+R
\end{aligned}
$$

Using Eqn.(2.3) in the above, we get

$$
C_{P}=C_{V}+R
$$

i.e.,

$$
C_{P}-C_{V}=R
$$

Relation between P and V for Reversible Process of an Ideal Gas

From first law of thermodynamics,

$$
d U=d Q+d W
$$

Rearranging the above, and substituting for $d U$ and $d W$, as

$$
d U=-C_{V} d T
$$

and

$$
d W=-P d V
$$

we get,

$$
C_{V} d T=d Q-P d V
$$

For an adiabatic process, $d Q=0$. Hence the above equation becomes,

$$
\begin{equation*}
C_{V} d T=-P d V \tag{3.1}
\end{equation*}
$$

For an ideal gas, $P V=R T$. i.e.,

$$
T=\frac{P V}{R}
$$

Differentiating, we get

$$
d T=\frac{1}{R}(P d V+V d P)
$$

Substituting for dT from this in Eqn.(3.1), we get

$$
\frac{C_{V}}{R}(P d V+V d P)=-P d V
$$

Rearranging the above in terms of derivatives of P and V, we get

$$
\begin{equation*}
\left(1+\frac{C_{V}}{R}\right) P d V=-\frac{C_{V}}{R} V d P \tag{3.2}
\end{equation*}
$$

From Eqn.(2.5) we have, $C_{P}-C_{V}=R$. i.e.,

$$
C_{V}+R=C_{P}
$$

Using this in Eqn.(3.2) and simplifying, we get

$$
\begin{equation*}
C_{P} P d V=-C_{V} V d P \tag{3.3}
\end{equation*}
$$

The ratio C_{P} / C_{V} is defined as γ. i.e.,

$$
\begin{equation*}
\frac{C_{P}}{C_{V}}=\gamma \tag{3.4}
\end{equation*}
$$

Integrating on both sides, we get

$$
\ln P=-\gamma \ln V+C_{1}
$$

where C_{1} is an integration constant. Rearranging the above equation, we get

$$
\ln P+\ln V^{\gamma}=C_{1}
$$

i.e.,

$$
\ln \left(P V^{\gamma}\right)=C_{1}
$$

Taking exponential on both sides, we get

$$
\exp \left(\ln \left(P V^{\gamma}\right)\right)=\exp \left(C_{1}\right)
$$

i.e.,

$$
P V^{\gamma}=\text { constant }
$$

The analysis of many complex processes can be reduced to a manageable level by utilizing some idealizations.

Cyclic Process

$\Delta \mathrm{U}$ and $\Delta \mathrm{H}$ depends are state functions and depend only on initial and final states, not on the path of the process

Q and W depend on the path of the process

S3n

Q \& W for idealized processes undergone by an ideal gas
For an ideal gas, $\Delta U=C_{V} \Delta T \quad \Delta H=C_{P} \Delta T \quad C_{P}-C_{V}=R$

- Constant Volume Process (const. V)

$$
W=0, Q=C_{V} \Delta T
$$

- Constant Pressure Process (onst. P)

$$
W=-P \Delta V \quad Q=C_{P} \Delta T
$$

- Isothermal Process (const. T)

$$
\Delta \mathrm{U}=0, \mathrm{Q}=-\mathrm{W}, \mathrm{~W}=\mathrm{RT} \ln \left(\mathrm{~V}_{1} / \mathrm{V}_{2}\right)=\mathrm{RT} \ln \left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)
$$

- Reversible Adiabatic Process ($\mathrm{Q}=0$; $\mathrm{PV} \mathrm{V}^{\gamma}=$ const., $\mathrm{W}=\Delta \mathrm{U}$) $\mathrm{W}=\left(\mathrm{P}_{2} \mathrm{~V}_{2}-\mathrm{P}_{1} \mathrm{~V}_{1}\right) /(\gamma-1)=\mathrm{R}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) /(\gamma-1)$
- Polytropic Process ($\mathrm{PV} \mathrm{V}^{\mathrm{n}}=$ const.)

$$
\begin{aligned}
& \mathrm{W}=\left(\mathrm{P}_{2} \mathrm{~V}_{2}-\mathrm{P}_{1} \mathrm{~V}_{1}\right) /(\mathrm{n}-1)=\mathrm{R}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) /(\mathrm{n}-1) \\
& \mathrm{Q}=\Delta \mathrm{U}-\mathrm{W}
\end{aligned}
$$

Isothermal Process

As temperature is constant, $\Delta U=0$. This gives, $Q=-W$

$$
W=-\int P d V
$$

For an ideal gas,

$$
P=\frac{R T}{V}
$$

Substituting this in the above equation, we get

$$
W=-\int R T \frac{d V}{V}
$$

Integrating between the initial state (1) to the final state (2), we get,

$$
W=R T \ln \frac{V_{1}}{V_{2}}
$$

Since, $V_{1} / V_{2}=P_{2} / P_{1}$ for an ideal gas at constant temperature, the above equation can also be written as

$$
W=R T \ln \frac{P_{2}}{P_{1}}
$$

Adiabatic Process

By definition

$$
\begin{equation*}
W=-\int P d V=-\int_{V_{1}}^{V_{2}} P d V \tag{3.6}
\end{equation*}
$$

For the adiabatic process, pressure and volume are related by the expression $P V^{\gamma}=$ constant. i.e.,

$$
\begin{equation*}
P V^{\gamma}=P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma}=\text { constant }=C_{1} \tag{3.7}
\end{equation*}
$$

Substituting for P from Eqn.(3.7) in Eqn.(3.6), we get

$$
W=-\int_{V_{1}}^{V_{2}} \frac{C_{1}}{V^{\gamma}} d V
$$

i.e.,

$$
W=-\frac{C_{1}}{-\gamma+1}\left[V_{2}^{-\gamma+1}-V_{1}^{-\gamma+1}\right]
$$

Using Eqn.(3.7) in the above, we get

$$
W=\frac{1}{\gamma-1}\left[\left(P_{2} V_{2}^{\gamma}\right) V_{2}^{1-\gamma}-\left(P_{1} V_{1}^{\gamma}\right) V_{1}^{1-\gamma}\right]
$$

Simplifying, we get

$$
\begin{equation*}
W=\frac{P_{2} V_{2}-P_{1} V_{1}}{\gamma-1} \tag{3.8}
\end{equation*}
$$

From ideal gas law, $P_{2} V_{2}=R T_{2}$; and $P_{1} V_{1}=R T_{1}$. Therefore, the above expression can also be written as

$$
\begin{equation*}
W=\frac{R\left(T_{2}-T_{1}\right)}{\gamma-1} \tag{3.9}
\end{equation*}
$$

Example: 1

Constant Volume Heating, Constant Pressure Cooling

Air is compressed from 2 atm absolute and $28^{\circ} \mathrm{C}$ to 6 atm absolute and $28^{\circ} \mathrm{C}$ by heating at constant volume followed by cooling at constant pressure. Calculate the heat and work requirements and $\Delta \mathrm{U}$ and $\Delta \mathrm{H}$ of the air. C_{V} of air $=0.718 \mathrm{~kJ} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$

Example: 2

Constant Pressure Heating, Constant Volume Cooling

A 28 liter rigid container is open to the atmosphere, and heat is added to the bottom of the container until the air temperature inside reaches $450^{\circ} \mathrm{C}$. The container is then quickly sealed, removed from the heating source, and allowed to cool to room temperature of $25^{\circ} \mathrm{C}$. How much heat is lost during the cooling process? $\left(C_{p}\right.$ of air $\left.=1.005 \mathrm{~kJ} . \mathrm{kg}^{-1} .{ }^{\circ} \mathrm{C}^{-1}\right)$

Example: 3

Isothermal Expansion

2 liter of nitrogen originally at $T_{1}=0^{\circ} \mathrm{C}$ and $P_{1}=5$ atm, isothermally expands until the final pressure is $P_{2}=1$ atm. How much heat flows into this system during the expansion? ($C_{V}=2.5 R$)

Example: 4

Adiabatic Compression, Constant Volume Cooling

220 kg of CO_{2} gas at $27^{\circ} \mathrm{C}$ and 1 atm is compressed adiabatically to $1 / 5^{\text {th }}$ of its volume. It is then cooled to its original temperature at constant volume. Find $\mathrm{Q}, \Delta \mathrm{U}$ and W for each step and for the entire process. (γ of $\mathrm{CO}_{2}=1.3$)

Example: 5

Polytropic Process

Nitrogen expands in a cylinder from 690 kPa and $260^{\circ} \mathrm{C}$ to 210 kPa and $40^{\circ} \mathrm{C}$. Assuming ideal gas behavior, calculate the work done on the face of the piston per kg of nitrogen. Assume pressure and volume are related by $\mathrm{PV}^{\delta}=$ constant, where δ is a suitable exponent. Also calculate Q and $\Delta \mathrm{U}$ of the process. (C_{p} of nitrogen $=1.038 \mathrm{~kJ}^{\mathrm{kg}}{ }^{-1} .{ }^{\circ} \mathrm{C}^{-1}$)

Exercise: 1

Cyclic Process - Adiabatic, Isobaric, Isothermal steps

An ideal gas undergoes the following reversible processes:
(a) From an initial state of 343 K and 1 bar it is compressed adiabatically to 423 K .
(b) It is then cooled to 343 K at constant pressure.
(c) Finally, it is expanded to its original state isothermally.

Calculate $\Delta \mathrm{U}, \Delta \mathrm{H}, \mathrm{W}$ and Q for each step as well as for the entire cycle. Assume $C_{V}=(3 / 2) R$.

Exercise: 2

Expression for Net work of a cyclic process:

An ideal gas is carried through a thermodynamic cycle consisting of two isobaric and two isothermal processes, as shown in the figure. Show that the net work done in the entire cycle is given by the equation:

$$
W_{\text {net }}=P_{1}\left(V_{1}-V_{2}\right) \ln \left(P_{2} / P_{1}\right)
$$

Exercise: 3

Cyclic Process

A thermodynamic system undergoes a cycle composed of a series of three processes for which $\mathrm{Q}_{1}=+10 \mathrm{~kJ}, \mathrm{Q}_{2}=+30 \mathrm{~kJ}$, and $\mathrm{Q}_{3}=-5 \mathrm{~kJ}$. For the first process, $\Delta \mathrm{U}=+20 \mathrm{~kJ}$, and for the third process, $\Delta \mathrm{U}=-20 \mathrm{~kJ}$. What is the work in the second process, and the net work output of the cycle?

Exercise: 4

Reversible Process described by a PV relation

A particular substance undergoes, expanding from an initial state of 20 bar to a final state of 8 bar. The path for the process is described by the equation:

$$
P=(0.036 / V)-4
$$

where P is in bar, and V is in m^{3}. If $\Delta \mathrm{U}$ for the change of state is -1400 J, determine W, Q, and ΔH.

Exercise: 5

Work of Balloon Expansion

A spherical balloon contains air at $P_{1}=150 \mathrm{kPa}$. It has an initial diameter of $D_{1}=0.3 \mathrm{~m}$. The balloon is heated until its diameter is $D_{2}=0.4 \mathrm{~m}$. It is known that the pressure in the balloon is proportional to its diameter. Calculate the work of expansion.

First law for steady flow open system

1. A room air heater or hair dryer

The Generalised Steady Flow system

\square s3n

If we have an open system, with mass continuously entering and leaving - three other forms of energy are carried in to or out of the system by virtue of the mass entering or leaving: they are:

$$
\begin{aligned}
\text { Kinetic Energy } & =\frac{1}{2} m v^{2} \\
\text { Potential Energy } & =m g z
\end{aligned}
$$

and the energy required to 'force' mass in to (and out of) the system against the system's (and surroundings') pressure.

$$
\begin{aligned}
\text { work } / \mathrm{kg} & =\text { pressure } \times \text { specific volume }(\text { in or out })=p \mathrm{v} \\
& \therefore \text { for mass } m, \quad \text { energy }=m p \mathrm{v}
\end{aligned}
$$

It follows that as well as changing the internal energy (\boldsymbol{U}) of the working fluid, its KE, PE and pV energy can also change because of the work and heat transfer in to or out of the system

For mass \boldsymbol{m} entering and leaving the system:

$$
\begin{aligned}
& \text { change in } K E=\frac{1}{2} m\left(v_{2}^{2}-v_{1}^{2}\right) \\
& \text { change in } P E=m g\left(z_{2}-z_{1}\right) \\
& \text { change in } p \mathrm{~V}=m\left(p_{2} \mathrm{v}_{2}-p_{1} \mathrm{v}_{1}\right) \\
& \text { change in } U=m\left(u_{2}-u_{1}\right) \\
& Q_{m}+W_{m}=\frac{1}{2} m\left(v_{2}^{2}-v_{1}^{2}\right)+m g\left(z_{2}-z_{1}\right)+m\left(p_{2} \mathrm{v}_{2}-p_{1} \mathrm{v}_{1}\right)+m\left(u_{2}-u_{1}\right)
\end{aligned}
$$

dividing each term by time to obtain rates of energy transfer and mass flow:

$$
\begin{aligned}
& \dot{Q}+\dot{W}=\dot{m}\left[\frac{1}{2}\left(v_{2}^{2}-v_{1}^{2}\right)+g\left(z_{2}-z_{1}\right)+\left(p_{2} \mathrm{v}_{2}-p_{1} \mathrm{v}_{1}\right)+\left(u_{2}-u_{1}\right)\right] \\
& \dot{Q}+\dot{W}=\dot{m}\left[\frac{1}{2}\left(v_{2}^{2}-v_{1}^{2}\right)+g\left(z_{2}-z_{1}\right)+\left(p_{2} \mathrm{v}_{2}+u_{2}\right)-\left(p_{1} \mathrm{v}_{1}+u_{1}\right)\right]
\end{aligned}
$$

or

Because a fluid will always have a temperature and pressure at entry and exit we combine the last two terms - to obtain the 'composite' property 'enthalpy': (which we defined earlier under the section on Properties of Fluids)

$$
h=p \mathrm{v}+u
$$

we can write the equation very compactly as:

$$
\dot{Q}+\dot{W}=\dot{m} \Delta\left[\frac{1}{2} v^{2}+g z+h\right]
$$

This is known as the steady flow energy equation (SFEE)
Δ means the 'difference in' and is always 'final'-'initial' or 'exit'-'entry'

$$
\dot{Q}+\dot{W}=\dot{m}\left[\left(\frac{v_{2}^{2}-v_{1}^{2}}{2}\right)+g\left(z_{2}-z_{1}\right)+\left(h_{2}-h_{1}\right)\right]
$$

In Thermodynamics because we are often using gases which are relatively low density fluids, and because the inlet and outlet velocities and heights are often similar we can often simplify the SFEE to:

$$
\begin{aligned}
\dot{Q}+\dot{W} & =\dot{m} \Delta h \\
\text { or } \quad \dot{Q}+\dot{W} & =\dot{m}\left(h_{2}-h_{1}\right)
\end{aligned}
$$

This is known as the simplified steady flow eriergy equation (SSFEE).

In Fluid Dynamics because we are often using liquids which are relatively high density fluids, and are often not transferring heat to or from the liquid or changing its internal energy content we can often simplify the SFEE to:

$$
\dot{W}=\dot{m} \Delta\left[\frac{1}{2} v^{2}+g z+p v\right]
$$

Example: 1

Steady flow Compressor's Inlet Pipe Diameter

A steady flow adiabtaic compressor is used to compress argon from 100 kPa and 27 oC to a pressure of 1.2 Mpa . The work required is 400 kW . If the inlet flow velocity is $10 \mathrm{~m} / \mathrm{s}$, calculate the diameter of the inlet flow line. ($\mathrm{C}_{\mathrm{P}}=1.005 \mathrm{~kJ} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$.)

Example: 2

Work of Turbine

Air flows through a turbine in a quasi-static adiabatic process from 350 kPa and $550^{\circ} \mathrm{C}$ to 100 kPa . The inlet velocity is $30 \mathrm{~m} / \mathrm{s}$ and the outlet velocity is $300 \mathrm{~m} / \mathrm{s}$. Calculate the work output of the turbine per kilogram of air. $\left(\mathrm{C}_{\mathrm{P}}=\right.$ $1.005 \mathrm{~kJ} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$.)

Example: 3

Diffuser-Nozzle's Outlet Conditions

Air at 20 kPa and $-35^{\circ} \mathrm{C}$ enters a diffuser-nozzle section at $280 \mathrm{~m} / \mathrm{s}$. The air goes through a quasi-static adiabatic process until its velocity is reduced to $30 \mathrm{~m} / \mathrm{s}$. Calculate the final temperature and pressure ($\mathrm{C}_{\mathrm{P}}=1.005 \mathrm{~kJ} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$. $)$

Example: 4

Flow Area of a Channel

The velocity of a stream of air is to be slowed by passing it through a flow channel which allows it to go from $50 \mathrm{kPa},-10^{\circ} \mathrm{C}$, and $700 \mathrm{~m} / \mathrm{s}$ to $150 \mathrm{~m} / \mathrm{s}$. The process may be assumed to be quasi-static and adiabatic. Calculate the entrance and exit flow areas for a mass flow rate of $1.2 \mathrm{~kg} / \mathrm{s}$. $\left(\mathrm{C}_{\mathrm{P}}=1.005\right.$ $\mathrm{kJ} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$.)

Example: 5

Work Required for Pumping of Water
Calculate the work required to pump 40 litre/min of water from 170 kPa and $40^{\circ} \mathrm{C}$ to 7.5 MPa in an adiabatic process.

Exercise: 1

Nozzle Exit Velocity

Gases produced during the combustion of a fuel-air mixture, enter a nozzle at $200 \mathrm{kPa}, 150^{\circ} \mathrm{C}$ and $20 \mathrm{~m} / \mathrm{s}$ and leave the nozzle at 100 kPa and $100^{\circ} \mathrm{C}$. The exit area of the nozzle is $0.03 \mathrm{~m}^{2}$. Assume that these gases behave like an ideal gas with $C_{P}=1.15 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$ and $\gamma=1.3$, and that the flow of gases through the nozzle is steady and adiabatic. Determine (i) the exit velocity and (ii) the mass flow rate of the gases.

