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First Law of Thermodynamics

e It's the law of conservation of energy

e Change in total energy of the system is compensated by an
equal and opposite change in the total energy of the
surroundings.

For a closed system:
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SURROUNDING

In many applications of the first law, the system undergoes no change
in external potential or kinetic energy, but only changes in internal
energy. For these non-flow processes, the first law becomes:

AU=Q+W
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Heat Transfer

State 1 U =Internal Energy State 2
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Sign conventions for heat and work

There are two sign conventions in common use.

Positive heat in, positive work
in convention

Positive heat in, positive work
out convention

Positive
heat transfer

Positive _
heat transfer work

AU=Q+ W
We use the above convention

_m



Sign conventions for heat and work (contd.)

e The first is still the most common in the English-speaking world
and probably dates back to the introduction of steam engines. In
that era, engineers were particularly interested in heat engines
for pumping water or driving machinery. The desired output was
work and the required input was heat. It made sense to describe
both as positive quantities.

e The second sign convention, which I favour, is the most common
in the non-English-speaking woirld. According to this convention
heat and work are both taken as pcsitive when their direction is
into the system of interest.

e In my opinion the second convention is the most consistent, as
all transfers or interactions at the boundary can be treated in the
same way: they are taken as positive when inwards and
negative when outwards. We will use the second convention.
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Enthalpy
Enthalpy denoted as H is defined as below:
H=U+ PV

Differentiating,
dH = dU + PdV + VdP

Substituting for dU from

dU = d@Q + dW
= d@) — PdV
Therefore,
dH = d()Q — PdV + PdV +VdP
= dQ + VdP
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Specific Heat

By definition

) 0
ar )
dqQ

Cy = — 2
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Constant Volume Heat Addition Constant Pressure Heat Addition
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C, and C,

e We expect that C, will be bigger than C, for the simple reason
that more heat will need to be added when heating at constant
pressure than when heating at constant volume. This is because
in the latter case additional energy will be expended on doing
work on the atmosphere as the gas expands. It turns out that
indeed C; is bigger than C,, in practice
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Figure: http://wmww.tutorvista.com/content/physics/physics-iii/heat-and-thermodynamics/mayers-formula.php




Specific heat capacicies at 15 C asd | atm
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Specific heat values: Notice, however, that, because water has a low
molecular weight (molar mass), water has the largest specific heat
capacity of any common liquid or solid. (The specific heat capacities of
gaseous H, and He are, unsurprisingly, larger still. A kilogram of hydrogen
IS an enormous number of molecules, so it takes a lot of heat to warm
them all up.)

For liquids In general, Cp — Cv is so small in comparison with gases; but
there are cases where Cp — Cv is higher than R. m
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The heat capacity C; isless than C , for H20(l) near 4°C. Explain
this result.

Cp < CV is valid if V decreases with T at constant P.

This unusual behavior occurs because the density of water increases
with temperature in this range of 0 to 4°C. Therefore, work is done by
the surroundings on the systent as water is heated at constant P
between 0 °C and 4 °C.

Density of Freshwater
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Relation between Specific heats and Energy
First law for closed system Pro pe rties

dU = d() + dW
For reversible process, diWW = —PdV . Therefore
dU = d() — PdV
For a constant volume process, the above equation reduces to
dQ) == dU

i.e., Amount of heat added during a constant velume process equals the internal

energy change.
From the definition of enthalpy, and using first law for a closed system, we

can obtain
dH = d@) + VdP

For a constant pressure process, the above equation reduces to
di) = dH

i.e., Amount of heat added during a constant pressure process equals the en-
thalpy change. m
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From phase rule, it can be shown that the state of single component single
phase system, can be specified by two independent variables of the system.
Hence internal energy (U, a state property) can be considered as a function of
any two independent variables of the system. Let us consider U as a function
of T, and V.

U=U(T,V)
Differentiating,
ou ou
U = — 1T %
w=(r), 7+ (57),
At constant volume,
dU = | ﬁg dT
i /oy

Dividing by dT" at constant V',

dU _(oU
), = \ar),

Using the above, for a closed system involving constant volume change

Co — dQy\  (dU\  [oU
v=\ar) =\ar), = \ar),

aU
v = (a—:r)
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U & H for Ideal Gases

For ideal gases, U is a function of T" alone. Hence the above equation can
be written as,

dU
dT
Likewise, by considering H as a function of T' and P, it can be proved that,

Cp = (QH)

vl p

Cy

For ideal gases, H is a function of T alone. Hence the above equation can
be written as,

dH
Cp=ar
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Relation between C; and C,, for an ideal gas

From Eqn.(2.4), we have

dH
o=
Par
From the defimtion of H.
H=U+ PV
For an 1deal gas
PV = RT
Hence, we have
) d(U + PV)
C-'p — - -
dT
B (E(E.-T + RT)
B dT
dU
= — 4+ R
ar T



Using Eqn.(2.3) in the above, we get
Cp=Cy+ R

1.0,

Cp—Cy =R



Relation between P and V for Reversible Process
of an Ideal Gas

From first law of thermodynamics,
dU = dQ + dW
Rearranging the above, and substituting for dU and dW, as
dU = CydT

and

dW = —PdV

we oet,

Cydl = dc) — PdV

For an adiabatic process, d() = 0. Hence the above equation becomes,

CvdT = —PdV (3.1)

..., a)’i



For an 1deal gas, PV = RT. 1.e.,

rPv
R
Differentiating, we get
| . .
Al = — (PdV 4+ VdP)
R
Substituting for d'T" from this in Fgn.(3.1), we get
C /
—(PdV +VdP)y = —PdV
R
Rearranging the above in terms of derivatives of P and V', we get
Cy Cy
l+ — | PdV = ——VdP 3.2
(1+5F) pav = -5 32)

From Eqn.(2.5) we have, C'p — Cy = R. 1.e.,
Cvy+R=0Cp



Using this in Equn.(3.2) and simplifying, we get
CpPdV = —-CyVdP (3.3)

The ratio Cp/Cy is defined as . 1.e.,

Cp
=5 3.4

Integrating on both sides, we get
InpP = —-—ylnV -+
where C'1 1s an integration constant. Rearranging the above equation, we get
mP+InV"=(Cy

l.e..

n(PV") =4
Taking exponential on both sides, we get

exp (In(PV7)) = exp(Cy)

l.e..

PV7 = constant (3.5)

- U






GAS

PV = = const.

PVi'= PV

PV = const.

<V



Actual cyele

Ideal cycle

L 3

The analysis ol muny comples
processes can be reduced o o
managcable level by utlizing same
idealizations.
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Cyclic Process

-

\/

AU and AH depends are state functions and depend only on initial
and final states, not on the path of the process
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V

Q and W depend on the path of the process



Q & W for idealized processes undergone by an

ideal gas
For an ideal gas, AU = C, AT AH =C, AT Cp-Cy =R

e Constant Volume Process (const. V)
W=0, Q=C,AT

e Constant Pressure Process {(zonst. P)
W=-PAV Q=C,AT

o Isothermal Process (const. T)
AU =0,Q=-W, W=RTIn(V{V5) =RT In(P5/P;)

e Reversible Adiabatic Process (Q = 0; PVY = const., W = AU)
W = (P,V;-P1V1) / (y-1) = R(T>-T1)/(y-1)

e Polytropic Process (PV" = const.)
W = (P,V;,-P,V1) / (n-1) = R(T>-Ty)/(n-1)

Qe Ss1?



Isothermal Process

As temperature is constant, AU = 0. This gives, ) = —W

W=- / PdV

For an ideal gas,

RT
P=—
1..1"
Substituting this in the above equation, we get
S

Integrating between the initial state (1) to the final state (2), we get,

v
W =Rl In —
V 2

Since, V;/Vy = P, /P, for an ideal gas at constant temperature, the above equation can also be
written as

, P,
W = RTIn =
npl

.. "



Adiabatic Process

Vo
W =— / PdV = — ] Pdv (3.6)
V

For the adiabatic process, pressure and volume are related by the expression PV7Y = constant. 1.e..

By definition

PVY = PV = P,V = constant = ('} (3.7)

Substituting for P from Eqn.(3.7) in Eqn.(3.6), we get
Va

W= — LAV
V- Vo

. Cfl PP | R
W = __?_I_l {1.-2 +1_ Vv, v+ }

1.e..

Using Eqn.(3.7) in the above, we get

W= —— (V) V7" = (AV]) V7]

Simplhifyving. we get
PV — Py

v — ]_

From ideal gas law, Vo = RT5:; and PiV; = RT,. Therefore, the above expression can also be
written as

W (3.8)

_ R(I;-Ty)

= 59 P

—







Example: 1
Constant Volume Heating, Constant Pressure Cooling

Air is compressed from 2 atm absolute and 28°C to 6 atm absolute
and 28°C by heating at constant volume followed by cooling at
constant pressure. Calculate the heat and work requirements and

AU and AH of the air. C, of air = 0.718 kJ/kg.°C



Example: 2

Constant Pressure Heating, Constant Volume Cooling

A 28 liter rigid container is open to the atmosphere, and heat is
added to the bottom of the container until the air temperature
inside reaches 450°C. The containeris then quickly sealed,
removed from the heating source, and allowed to cool to room
temperature of 25°C. How much heat is lost during the cooling
process? (Cp of air = 1.005 kl.kg-1.°C-1)



Example: 3

Isothermal Expansion

2 liter of nitrogen originallyat T; = 0°C and P, = 5 atm,
isothermally expands until the final pressure is P, = 1 atm. How
much heat flows into this system during the expansion?

(Cy = 2.5R)



Example: 4

Adiabatic Compression, Constant Volume Cooling

220 kg of CO, gas at 27°C and 1 atm is compressed adiabatically to
1/5th of its volume. It is then cooled to its original temperature at
constant volume. Find Q, AU and W for each step and for the entire
process. (y of CO,= 1.3)



Example: 5

Polytropic Process

Nitrogen expands in a cylinder from 690 kPa and 260°C to 210 kPa
and 40°C. Assuming ideal gas behavior, calculate the work done on
the face of the piston per kg of nitrogen. Assume

pressure and volume are related by PV? = constant, where dis a
suitable exponent. Also calculate Q and AU of the process. (Cp of
nitrogen = 1.038 kJ.kg1.°C-1)



Exercise: 1

Cyclic Process - Adiabatic, Isobaric, Isothermal steps

An ideal gas undergoes the following reversible processes:

(a) From an initial state of 343 K and 1 bar it is compressed
adiabatically to 423 K.

(b) It is then cooled to 343 K at constant pressure.

(c) Finally, it is expanded to its original state isothermally.
Calculate AU, AH, W and Q for each step as well as for the entire
cycle. Assume C, = (3/2)R.



Exercise: 2
Expression for Net work of a cyclic process:
An ideal gas is carried through a thermodynamic cycle consisting of
two isobaric and two isothermal processes, as shown in the figure.
Show that the net work done in the entire cycle is given by the
equation:

Whet = P1(V1-V3) In(P,/Py)

T B\: C\
P _____________ T < 1
' A D
1 N V
Vi V,



Exercise: 3

Cyclic Process

A thermodynamic system undergoes a cycle composed of a series
of three processes for which Q; = +10 kJ, Q, = +30 kJ, and

Qs = -5 kJ. For the first process, AU = +20 kJ, and for the third
process, AU = -20 kJ. What is the work in the second process, and
the net work output of the cycle?



Exercise: 4
Reversible Process described by a PV relation
A particular substance undergoes, expanding from an initial state of
20 bar to a final state of 8 bar. The path for the process is
described by the equation:

P=(0.036/V) -4
where P is in bar, and V is in m3. If AU for the change of state is
-1400 ], determine W, Q, and AH.



Exercise: 5

Work of Balloon Expansion

A spherical balloon contains air at P, = 150 kPa. It has an initial
diameter of D; = 0.3 m. The balloon is heated until its diameter is
D, = 0.4 m. It is known that the pressure in the balloon is
proportional to its diameter. Calculate the work of expansion.






First law for steady flow open system

(PV),, W 5\ (PV),.,
lr.,."’ ™ \ N IIJ/.-*' "x\l
L L) /

m,, N [ 'mo'_:
U in | f_'a_‘i

AU+ AE, +AE = W +Q

/ Wg- APY)
\

'!' *-n.': ol _}, .
AU >> AE, :-"Ep work related to fluid
expansion as it moved

AU + A(PV) =W+ Q through the pipe work

——— SS12
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1. A room air heater or hair dryer

—— system boundary

Air mass flow in

f— Ll " " " e " el e

B B AR AR SRV !
AT AR e :

Air mass flow out

/ ® \& Continuous Q ®
Continuous Heat transfer
Work transfer
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The Generalised Steady Flow system

entry volume /unit mass
Inlet pressure Vi Qutlet
P, / /_\ exit volume /unit mass  (or discharge)
i, i { } v () ) vV, pressure
2

Y

| 2

Inlet velocity /—\ 0 ") .
J 3

Exit height Z, Exit velocity

Inlet height Z,

Height datum —

Continuous heat
transfer in or out

. t Continuous work
transfer in or out



If we have an open system, with mass continuously
entering and leaving - three other forms of energy are carried in to or out of the
system by virtue of the mass entering or leaving: they are:

Kinetic Energy = %mv 2
Potential Energy = mgz

and the energy required to ‘force’ mass in to (and out of) the system
against the system’s (and surroundings’) pressure.

work /1 kg = pressure X specific velume (in or out ) = pv

.. for mass m, CNergy = mpv

It follows that as well as changing the internal energy (U) of the working fluid, its
KE, PE and pV energy can also change because of the work and heat transfer

in to or out of the system

_81



For mass m entering and leaving the system:
change in KE = Em(v; —v,%)
change in PE =mg(z,—2,)
change in pN =m(p,v,—p,v,)

change inU = m{i, —u,)

2 2
Q +W =-mv,”—v )+mg(z,—z)+m(p,v,—pVv,)+mu,—u,)

1
2

dividing each term by time to obtain rates of energy transfer and mass flow:
R : 2 2
Q+W =nm[5(v," =v, )+ g(z, = 2)+(p,vy— pyvy) + (1, —1t))]

or Q+W =m [iz(v; — vlz)+ g(z2y—2)+(pvy +uy)—(pv,+uy)l

_81



Because a fluid will always have a temperature and pressure at entry and exit —

we combine the last two terms - to obtain the ‘composite’ property ‘enthalpy’:
(which we defined earlier under the section on Properties of Fluids)

h=pv+u

we can write the equation very ccinpactly as:

Q+W:m&[%v2 +gz+h]

This is known as the steady flow energy equation (SFEE)

A means the ‘difference in’ and is always final-‘initial’ or ‘exit’-‘entry’

2
1}2 —_ 'L_!]

O+W =1 [{T) +2(z,— ) +(h,—h)]

_81



In Thermodynamics because we are often using gases which are relatively low density
fluids, and because the inlet and outlet velocities and heights are often similar we can
often simplify the SFEE to:

O+W =mAh
or Q+W =n(h,—h)

This is known as the simplified steady flow erzrqy equation (SSFEE).

In Fluid Dynamics because we are often using liquids which are relatively high density
fluids, and are often not transferring heat to or from the liquid or changing its internal
energy content we can often simplify the SFEE to:

W=mA[$v +gz+ pv]



Example: 1

Steady flow Compressor’s Inlet Pipe Diameter

A steady flow adiabtaic compressor is used to compress argon from 100
kPa and 270C to a pressure of 1.2 Mpa. The work required is 400 kW. If the
inlet flow velocity is 10 m/s, calculate the diameter of the inlet flow line.

(Cp = 1.005 kJ/kg.°C.)



Example: 2

Work of Turbine
Air flows through a turbine in a quasi-static adiabatic process from 350 kPa

and 550°C to 100 kPa. The inlet velocity is 30 m/s and the outlet velocity is
300 m/s. Calculate the work output of the turbine per kilogram of air. (Cp =
1.005 kJ/kg.°C.)



Example: 3
Diffuser-Nozzle’s Outlet Conditions
Air at 20 kPa and -35°C enters a diffuser-nozzle section at 280 m/s. The air

goes through a quasi-static adiabatic process until its velocity is reduced to
30 m/s. Calculate the final temperature and pressure (Cp = 1.005 kJ/kg.°C.)



Example: 4

Flow Area of a Channel

The velocity of a stream of air is to be slowed by passing it through a flow
channel which allows it to go from 50 kPa, -10°C, and 700 m/s to 150 m/s.
The process may be assumed to be quasi-static and adiabatic. Calculate
the entrance and exit flow areas for a mass flow rate of 1.2 kg/s. (Cp = 1.005

kJ/kg.°C.)



Example: 5
Work Required for Pumping of Water
Calculate the work required to pump 40 litre/min of water from 170 kPa and

40°C to 7.5 MPa in an adiabatic process.



Exercise: 1

Nozzle Exit Velocity
Gases produced during the combustion of a fuel-air mixture, enter a nozzle

at 200 kPa, 150°C and 20 m/s and leave the nozzle at 100 kPa and 100°C.
The exit area of the nozzle is 0.03 m?. Assume that these gases behave like
an ideal gas with C, = 1.15 kJ/kg-K and y= 1.3, and that the flow of gases
through the nozzle is steady and adiabatic. Determine (i) the exit velocity
and (i) the mass flow rate of the gases.



