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Ideal Solution
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Figure 9.1: Pxy diagram of ideal solution
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Figure 9.2: Vaporization process of ideal solution (Pzy diagram)
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Figure 9.3: T'ry diagram of ideal solution
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Deviations from Ideal Solution
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Minimum Boiling Azeotrope
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Maximum Boiling Azeotrope
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x-y Diagrams
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1. Steroisomers, a = 1
2. Ideal solutions
3. Minimum boiling azeotropes

~____ 4. Maximum boiling azeotropes

5. Heteroazeotropes



Raoult’s Law

P — XAPAsat + XBPBsat

Ya = XaPa¥ P

Pressure

const. T

PSS, &,

P, V8.

PVS. U,

pL vs. &.

Las yn



-|- sat
B

Temperature

Const. P

Vapor

Dew points
Y, vs. T

Bubble points
X NS

-I-Asat

1.0



one-phase liguid

20

bubble-P (P-x)

P (bar)

weL gt

one-phase vapor
I I I I I

0 0.2 0.4 0.6 0.8 1

xy and
Figure 9.4 Isothermal Pxy diagram at 330 K computed from the Redlich-Kwong equation of
state. Component 1 is an alkane; 2 is an aromatic. Broken vertical line represents a reversible
isothermal expansion from one-phase liquid at A to one-phase vapor at E. Broken horizontal
line is the vapor-liquid tie line at 10 bar. Filled squares mark pure-component vapor pressures
at 330 K. Note that component 1 is more volatile than component 2. n
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Figure 9.6 Isobaric Txy diagram at 30 bar for the same alkane(1)-aromatic(2) mixture shown in
Figure 9.4. The broken vertical line represents a reversible isobaric cooling from one-phase
vapor at A to one-phase liquid at E. The broken horizontal line is the vapor-liquid tie line at 415

K. Filled squares are pure-component boiling points at 30 bar.
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Figure 9.5 Effect of temperature on the Pxy diagram for the alkane(l)-aromatic(2) mixture of
Figure 9.4. The 330 K-isotherm is subcritical, but the 430 K-isotherm has a critical point (dot) at
56.1 bar and z; = 0.781. Computed from Redlich-Kwong equation.
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Effect of Pressure

500

400

I I I I I
0 0.2 0.4 (.6 0.8 1
xp and iy

Figure 9.7 Effect of pressure on the Txy diagram for the alkane(l }aromatic(2) mixture of
Figure 9.6. At 30 bar all these mixtures are subcritical, but at 55 bar two critical points occur

(dots): one at 42355 K with z; = 0.8075 and another at 533.60 K with z; = 0.2255. Filled
squares mark pure-component boiling points at 30 bar.

..



60 —

P-T Diagram
Ve

40

F {bar)

20

N
300 400 T (K) 500

Figure 9.8 Pressure-temperature diagram for the alkane(l)-aromatic(2) mixture in Figures 9.4-

9.7. Solid lines are pure vapor-pressure curves, ending at pure critical points (filled circles).

Dashed line is the mixture critical line. Dash-dot lines are liquid constant-composition lines;

small dashed lines are vapor constant-composition lines. Filled square at A is a vapor-liquid

equilibrium point; it occurs at 14.5 bar, 386.7 K, x; = 0.25, iy, =0.75. '
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Deviation from Ideal Solution

e The activity coefficients express the departure from ideality and
thus define the excess Gibbs energy of the solution.

Deviation from ideality is said to be positive when y> 1 (In yis
positive) and negative when y< 1(In yis negative).



Positive Deviation from Raoult’s Law
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Negative Deviation From Raoult’s Law
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Azeotropes

e Ifazeotropes are not present, a fractional distillation can eventually
separate the mixture into the pure components, with the component
with the higher vapor pressure ending up as the distillate and the less
volatile component (known as the residue) left in the distillation pot.

e For a minimum boiling azeotrope¢, a fractional distillation can produce a
distillate with the azeotropic compcsition and a residue that is one of
the pure components, depending on the composition of the starting
mixture.

e For a maximum boiling azeotrope a fractional distillation can produce
one of the pure components as the distillate, and a residue with the
azeotropic composition.
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Liquid + vapour equilibrium in the system water + ethanol at
60 °C. Filled circles represent liquid phase; open circles vapour
phase
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Figure 14.3 Boiling temperature against composition phase diagram for {(x; or »;)
CsFg 4+ (x; or y2) CgHg) at a pressure of 0.664 MPa. Evident in the diagram is a
minimum boiling azeotrope at point A and a maximum boiling azeotrope at point B.
Reprinted with permission from W. J. Gaw and F. L. Swinton, “Occurrence of a
Double Azeotrope in the Binary System Hexafluorobenzene + Benzene™; Nature
{London), 212, 284 (1966). Copyright MacMillan Magazines Ltd.
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VLE Calculations of Non-ideal Solutions

Obtain y, from azeotropic composition data

Evaluate model parameters of y-x; models based on the above
data

Make VLE calculation with y;,P = Pt
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VLE Problems

Unknowns
Name to find
Bubble P T, X P,y
Dew P T, Vi P, X;

Bubble T P, x; T, i
Dew T P vy, T, Xi
Flash T, P, Z; Xir Yis nv/n




Henry’s Law & Raoult’s Law

e Asearly asin 1803 William Henry showed empirically that the vapor
pressure of a solute / is proportional to the concentration of solute /:

pi = XKy,
where Xx; is the mole fraction solute and ky; is known as the Henry’s
law constant.

e More than 80 years later Francois Racult demonstrated that at low
concentrations of a solute, the vapor pressure of the solvent is simply

*
Pi = XiPi
where X; is the mole fraction suivenc and p/* is the vapor pressure of the
pure solvent.

e Raoult’sand Henry’s laws are often termed ‘limiting laws’. This use
reflects that real solutions often follow these laws at infinite dilution
only.
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KA (Henry's law constant) measures
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Example 7.22 pl'-flash. A feed F' iz split inte a vapor product V' and a liquid product L
in a flash tank (see Figure 7.4 on page 189). The feed 15 50% pentane, 30% herane and 20%
cycloherane (all in mol-% ). In the tank, T = 300K and p = b bar. For example, we may have
a heat erchanger that keeps constant temperature and a valve on the vapor product stream
that keeps constant pressure. We want to find the product split and product compositions.
Assume ideal liguid mizture and ideal gas (Raoult’s law).

Comment. This is a quite close-boiling mirture and we have already found that at 5 bar the
bubble point temperature iz 382,64 K (Exrample 7.18) and the dew point temperature i 3953.53(0
K (Example 7.20). The temperature in the flash tank must be between these temperatures for
a two-phase solution to erist (which it does 1n our case since T = 300 K).

Solution. The feed mizture of pentane (1), hezane (2] and cycloherane {3) is

#1-=08 =03 zm=102

We have K; = g2 (T)/p and at T = 390K and p= 5 bar, we find with the Antoine parameters
in Table 7.2:
Ky =10685, K;=07T42, K3=10.532

Now, z; and K; are known, and the Rachford-Rice eguation (7.50) iz solved numerically to

find the vapor split V/F = 0.6915. The resulting liguid and vapor composifions are (for details
see the MATLAB code below):

ry = 03393, = =0.3651, &x3=0.2956

y1 = 05717, 32 =02700, gz =0.1574
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Example 7.23 Condenser and flash drum for ammonia synthesis. The exif gas from
an ammonia reactor 15 at 250 bar and contains 61.5% Ha, 20.5% No and 158% NHa. The gas
iz cooled to 257 C (partly condensed), and iz then separated in a flash drum into a recycled
vapor stream V' and a liguid product L. containing most of the ammonia. We want to caleulate
the product compositions (L and V' ) from the flash drum.

Data. In spite of the high pressure, we assume for simplicity ideal gas. Use vapor pressure
data for ammonta from Table 7.2 and Henry's law coefficients for Na and Hs from page 187.
For ammonia, we assume ideal liguid mirture, i.e., ywia = 1 (which s reasonable since the
liguid phase is almost pure ammonia).

Solution. The feed mizture of Ha (1), Na {2) and NHa (3) is
z1 = 0.615, =z2=0.205, z3=0.18
For ammeonia, we have at T = 29815 K and p = 250 bar (Haoult’s law}:

Bl L WER
] Ps (1) Q.85 bar ol
s _ L — 0.0302
= 250 bar




For Hy and N2, we have from the given data for Henry's coefficient at 25°C (205,15 K):
Hy(T) 15200 bar

= = — B0.8
o 3 250 bar

. Ha(T) 8900 bar
=" = 0

Now, z; and K; are knoum, and the Rachfoed-Rice equation (7.50) is solved numerically to
find the vapor split V /F = 0.8500. The resulting lizuid and vapor compositions of the products

aAre

1 =0.0119, &2 =0.006Y, sy =0.95814
y1 = 0.7214, 2 =02400, y3 = 0.0386

This agrees well uath flow sheet data from a commercial ammonia plant,



